scholarly journals CFD Characterization of a Wet Foam Flow Rheological Behavior

Author(s):  
Heni Dallagi ◽  
Ramla Gheith ◽  
Ahmad Al Saabi ◽  
Christine Faille ◽  
Wolfgang Augustin ◽  
...  

In some industrial processes, aqueous foams flow presents an important phase of the process, whereas, they cause pressure drop when designing and dimensioning systems. Identifying the different rheological parameters of foam flow is an interest key to understanding the interfacial phenomena. Actually, the difficulty to model the rheological parameters of foam flow is a major challenge. In this study, we present a robust model to describe the foam fluid inside horizontal channels by the reverse approach of a numerical simulation (Computational Fluid Dynamics: CFD), based on the behavior laws of the Herschel-Bulkley type, for the non-Newtonian fluids. This reverse method starts from experimental (deduced from Particle Image Velocimetry (PIV) technique) results of the previous experimental work of Chovet (2015). The pressure losses measurements near-wall velocity fields, velocity profiles and the wall shear stress evolution including the void fraction from 55% to 85%, are considered in order to identify the different parameters of the developed model to determine the nature of the flow, the foams rheological behavior and the foam flow regime along the length of the channel. The numerical study (CFD) is applied for two conditions: the first one for a wet foam flow with a void fraction of 70% and a foam flow velocity of 2cm/s (one-dimensional regime) and the second one, for a foam quality of 55% and a flow rate of 6cm/s. The numerical evolutions are identical to experimental ones for these same conditions. Therefore, we can conclude that the Herschel-Bulkley rheological model can correctly describe the aqueous foams fix behavior.

SPE Journal ◽  
2007 ◽  
Vol 12 (01) ◽  
pp. 100-107 ◽  
Author(s):  
Zhu Chen ◽  
Ramadan Mohammed Ahmed ◽  
Stefan Z. Miska ◽  
Nicholas E. Takach ◽  
Mengjiao Yu ◽  
...  

Summary An experimental investigation on polymer-based drilling foams was carried out. Rheology tests were performed with foams that have different concentrations of hydroxylethylcellulose (HEC) and 1% commercial surfactant. Experiments were conducted in a large-scale flow loop that permits foam flow through 2-, 3-, and 4-in. pipe sections, and a 6×3.5-in. annular section. During the experiments, frictional pressure losses across the pipe and annular sections were measured for different gas/liquid flow rates, polymer concentrations (0, 0.25, and 0.5%), and foam qualities (70, 80, and 90%). Significant rheological variations were observed between aqueous foams containing no polymers and polymer-thickened foams. Experimental data show three distinct flow curves for the 2-, 3-, and 4-in. pipe sections, which indicates the presence of wall slip. The Oldroyd-Jastrzebski approach was used to calculate the wall slip velocity and determine the true shear rate. It has been found that wall slip decreases as the foam quality or polymer concentration increases. Two foam hydraulic models, which use slip-corrected and slip-uncorrected rheological parameters, have been proposed. These models are applicable for predicting pressure loss in pipes and annuli. Model predictions for the annular test section are compared with the measured data. A satisfactory agreement between the model predictions and measured data is obtained. This paper will help to better design foam drilling and cleanup operations. Introduction The use of drilling foams is increasing because foams exhibit properties that are desirable in many drilling operations. In practice, aqueous and polymer-based foams have been used with commercial success. However, drilling-foam rheology and hydraulics are still not sufficiently understood to minimize the risk and costs associated with foam drilling. It is generally accepted that the addition of polymers to the liquid phase affects the viscosity and stability of foams. However, the degree to which the bulk properties of drilling foams are enhanced by polymers has not been well understood and is difficult to predict. For safe and economical foam drilling, accurate knowledge of bottomhole pressure is essential. However, foam rheology and pressure drop predictions are not accurate enough to provide adequate hydraulic design information such as equivalent circulation density. This problem is more pronounced when polymers are added, because the apparent foam viscosity of polymer-thickened foams can be significantly higher than aqueous foams. It becomes apparent that there is a need for polymer foam rheological characterization in order to improve the knowledge of foam rheology and hydraulics. Foam rheological characterization was carried out using large-scale, single-pass pipe viscometers (composed of 2-, 3-, and 4-in. pipe sections). Foam qualities were varied from 70 to 90%. Test pressure and temperature were 100 psig and 80°F. Two foam hydraulic models were considered, assuming both no-slip condition at the wall and slip condition at the wall. The first model assumes no-slip boundary conditions in both pipes and annulus. By assuming no slip condition at the wall, slip-uncorrected foam rheological parameters were obtained from the pipe viscometer measurements. It has been found that if we plot friction factors vs. Reynolds numbers for all test data, regardless of pipe diameters, foam qualities, and flow rates, a single curve is obtained. This curve is similar to that obtained for incompressible fluid flow. Pressure drop in the annulus is calculated with the proposed model, and satisfactory predictions are obtained. The second model is based on the assumption that there is wall slip in both pipes and annulus. Rheological parameters and wall-slip coefficient corrections were first obtained using Oldroyd-Jastrzebski approach. The annular pressure losses are predicted based on slip-corrected rheological parameters and wall-slip coefficient correlations.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Guangxuan Zhu ◽  
Qingsong Zhang ◽  
Rentai Liu ◽  
Jiwen Bai ◽  
Wei Li ◽  
...  

Permeation grouting estimation is important for the design of grouting engineering. Filtration effects and rheological behavior play a key role in permeation grouting diffusion of cement-based grouts. To better understand the effect of filtration and grout rheological behavior on the grouting diffusion mechanism, one-dimensional permeation grout injections in sand columns under constant flow rate were performed by a self-developed experimental procedure. Experimental results showed that there were dramatic variations in rheological parameters and porosity along the diffusion distance. However, the rheological parameters changed slightly with time for each position. Based on the experimental results, a numerical model considering the filtration effect and grout rheological behavior was established to describe the mechanism of grout flow in porous media. In addition, numerical solutions from the proposed model are compared with the experimental results. The comparative results showed that the proposed numerical method can match the laboratory tests well. Finally, the effects of the grout flow velocity and the water/cement ratio of the grout on the diffusion mechanism are also discussed.


2011 ◽  
Vol 133 (7) ◽  
Author(s):  
Giulio Lorenzini ◽  
Simone Moretti

High performance heat exchangers represent nowadays the key of success to go on with the trend of miniaturizing electronic components as requested by the industry. This numerical study, based on Bejan’s Constructal theory, analyzes the thermal behavior of heat removing fin modules, comparing their performances when operating with different types of fluids. In particular, the simulations involve air and water (as representative of gases and liquids), to understand the actual benefits of employing a less heat conductive fluid involving smaller pressure losses or vice versa. The analysis parameters typical of a Constructal description (such as conductance or Overall Performance Coefficient) show that significantly improved performances may be achieved when using water, even if an unavoidable increase in pressure losses affects the liquid-refrigerated case. Considering the overall performance: if the parameter called Relevance tends to 0, air prevails; if it tends to 1, water prevails; if its value is about 0.5, water prevails in most of the case studies.


2021 ◽  
Vol 930 ◽  
Author(s):  
I.A. Milne ◽  
O. Kimmoun ◽  
J.M.R. Graham ◽  
B. Molin

The wave-induced resonant flow in a narrow gap between a stationary hull and a vertical wall is studied experimentally and numerically. Vortex shedding from the sharp bilge edge of the hull gives rise to a quadratically damped free surface response in the gap, where the damping coefficient is approximately independent of wave steepness and frequency. Particle image velocimetry and direct numerical simulations were used to characterise the shedding dynamics and explore the influence of discretisation in the measurements and computations. Secondary separation was identified as a particular feature which occurred at the hull bilge in these gap flows. This can result in the generation of a system with multiple vortical regions and asymmetries between the inflow and outflow. The shedding dynamics was found to exhibit a high degree of invariance to the amplitude in the gap and the spanwise position of the barge. The new measurements and the evaluation of numerical models of varying fidelity can assist in informing offshore operations such as the side by side offloading from floating liquefied natural gas facilities.


2021 ◽  
Vol 143 (7) ◽  
Author(s):  
Harika S. Kahveci

Abstract One of the challenges in the design of a high-pressure turbine blade is that a considerable amount of cooling is required so that the blade can survive high temperature levels during engine operation. Another challenge is that the addition of cooling should not adversely affect blade aerodynamic performance. The typical flat tips used in designs have evolved into squealer form that implements rims on the tip, which has been reported in several studies to achieve better heat transfer characteristics as well as to decrease pressure losses at the tip. This paper demonstrates a numerical study focusing on a squealer turbine blade tip that is operating in a turbine environment matching the typical design ratios of pressure, temperature, and coolant blowing. The blades rotate at a realistic rpm and are subjected to a turbine rotor inlet temperature profile that has a nonuniform shape. For comparison, a uniform profile is also considered as it is typically used in computational studies for simplicity. The effect of tip cooling is investigated by implementing seven holes on the tip near the blade pressure side. Results confirm that the temperature profile nonuniformity and the addition of cooling are the drivers for loss generation, and they further increase losses when combined. Temperature profile migration is not pronounced with a uniform profile but shows distinct features with a nonuniform profile for which hot gas migration toward the blade pressure side is observed. The blade tip also receives higher coolant coverage when subject to the nonuniform profile.


2020 ◽  
Author(s):  
Yulu Wang ◽  
Di Zhang ◽  
Yonghui Xie

Abstract An experiment facility of parallel-foil turbine is proposed in this study. The flow field around foils at different reduced frequency, pitching amplitude and plunging amplitude is measured by 2D Particle Image Velocimetry (PIV) system. And the energy extraction performance at different motion parameters is analyzed numerically. The comparison between experimental and numerical flow field is conducted at different reduced frequency. The evolution of flow field and the aerodynamic force with different pitching amplitude and plunging amplitude are discussed. The effect of pitching amplitude and plunging amplitude on energy extraction performance is obtained. Results indicate that the pitching amplitude can increase the range and the strength of acceleration area by varying the pitching velocity and the effective angle of attack. The optimal extraction performance appears at 70°. Due to the increase in plunging amplitude, the energy extraction performance and efficiency increase gradually. The optimal plunging amplitude is 1.0. The pitching amplitude and the plunging amplitude influence the power output by affecting the vortex shedding and the flow reattachment in oscillation process.


Author(s):  
Anil K. Tolpadi ◽  
Mark E. Braaten

An important requirement in the design of an inlet duct of a turboprop engine is the ability to provide foreign object damage protection. A possible method for providing this protection is to include a bypass branch duct as an integral part of the main inlet duct. This arrangement would divert ingested debris away from the engine through the bypass. However, such an arrangement could raise the possibility of separated flow in the inlet, which in turn can increase pressure losses if not properly accounted for during the design. A fully elliptic three-dimensional body-fitted computational fluid dynamics (CFD) code based on pressure correction techniques has been developed that has the capability of performing multiple block grid calculations compatible with present day turboshaft and turboprop branched inlet ducts. Calculations are iteratively performed between sets of overlapping grids with one grid representing the main duct and a second grid representing the branch duct. Both the grid generator and the flow solver have been suitably developed to achieve this capability. The code can handle multiple branches in the flow. Using the converged flow field from this code, another program was written to perform a particle trajectory analysis. Numerical solutions were obtained on a supercomputer for a typical branched duct for which experimental flow and pressure measurements were also made. The flow separation zones predicted by the calculations were found to be in good agreement with those observed in the experimental tests. The total pressure recovery factors measured in the experiments were also compared with those obtained numerically. Within the limits of the grid resolution and the turbulence model, the agreement was found to be fairly good. In order to simulate the path of debris entering the duct, the trajectories of spherical particles of different sizes introduced at the inlet were determined.


Sign in / Sign up

Export Citation Format

Share Document