Rheology and Hydraulics of Polymer (HEC) Based Drilling Foams at Ambient Temperature Conditions

SPE Journal ◽  
2007 ◽  
Vol 12 (01) ◽  
pp. 100-107 ◽  
Author(s):  
Zhu Chen ◽  
Ramadan Mohammed Ahmed ◽  
Stefan Z. Miska ◽  
Nicholas E. Takach ◽  
Mengjiao Yu ◽  
...  

Summary An experimental investigation on polymer-based drilling foams was carried out. Rheology tests were performed with foams that have different concentrations of hydroxylethylcellulose (HEC) and 1% commercial surfactant. Experiments were conducted in a large-scale flow loop that permits foam flow through 2-, 3-, and 4-in. pipe sections, and a 6×3.5-in. annular section. During the experiments, frictional pressure losses across the pipe and annular sections were measured for different gas/liquid flow rates, polymer concentrations (0, 0.25, and 0.5%), and foam qualities (70, 80, and 90%). Significant rheological variations were observed between aqueous foams containing no polymers and polymer-thickened foams. Experimental data show three distinct flow curves for the 2-, 3-, and 4-in. pipe sections, which indicates the presence of wall slip. The Oldroyd-Jastrzebski approach was used to calculate the wall slip velocity and determine the true shear rate. It has been found that wall slip decreases as the foam quality or polymer concentration increases. Two foam hydraulic models, which use slip-corrected and slip-uncorrected rheological parameters, have been proposed. These models are applicable for predicting pressure loss in pipes and annuli. Model predictions for the annular test section are compared with the measured data. A satisfactory agreement between the model predictions and measured data is obtained. This paper will help to better design foam drilling and cleanup operations. Introduction The use of drilling foams is increasing because foams exhibit properties that are desirable in many drilling operations. In practice, aqueous and polymer-based foams have been used with commercial success. However, drilling-foam rheology and hydraulics are still not sufficiently understood to minimize the risk and costs associated with foam drilling. It is generally accepted that the addition of polymers to the liquid phase affects the viscosity and stability of foams. However, the degree to which the bulk properties of drilling foams are enhanced by polymers has not been well understood and is difficult to predict. For safe and economical foam drilling, accurate knowledge of bottomhole pressure is essential. However, foam rheology and pressure drop predictions are not accurate enough to provide adequate hydraulic design information such as equivalent circulation density. This problem is more pronounced when polymers are added, because the apparent foam viscosity of polymer-thickened foams can be significantly higher than aqueous foams. It becomes apparent that there is a need for polymer foam rheological characterization in order to improve the knowledge of foam rheology and hydraulics. Foam rheological characterization was carried out using large-scale, single-pass pipe viscometers (composed of 2-, 3-, and 4-in. pipe sections). Foam qualities were varied from 70 to 90%. Test pressure and temperature were 100 psig and 80°F. Two foam hydraulic models were considered, assuming both no-slip condition at the wall and slip condition at the wall. The first model assumes no-slip boundary conditions in both pipes and annulus. By assuming no slip condition at the wall, slip-uncorrected foam rheological parameters were obtained from the pipe viscometer measurements. It has been found that if we plot friction factors vs. Reynolds numbers for all test data, regardless of pipe diameters, foam qualities, and flow rates, a single curve is obtained. This curve is similar to that obtained for incompressible fluid flow. Pressure drop in the annulus is calculated with the proposed model, and satisfactory predictions are obtained. The second model is based on the assumption that there is wall slip in both pipes and annulus. Rheological parameters and wall-slip coefficient corrections were first obtained using Oldroyd-Jastrzebski approach. The annular pressure losses are predicted based on slip-corrected rheological parameters and wall-slip coefficient correlations.

Author(s):  
Heni Dallagi ◽  
Ramla Gheith ◽  
Ahmad Al Saabi ◽  
Christine Faille ◽  
Wolfgang Augustin ◽  
...  

In some industrial processes, aqueous foams flow presents an important phase of the process, whereas, they cause pressure drop when designing and dimensioning systems. Identifying the different rheological parameters of foam flow is an interest key to understanding the interfacial phenomena. Actually, the difficulty to model the rheological parameters of foam flow is a major challenge. In this study, we present a robust model to describe the foam fluid inside horizontal channels by the reverse approach of a numerical simulation (Computational Fluid Dynamics: CFD), based on the behavior laws of the Herschel-Bulkley type, for the non-Newtonian fluids. This reverse method starts from experimental (deduced from Particle Image Velocimetry (PIV) technique) results of the previous experimental work of Chovet (2015). The pressure losses measurements near-wall velocity fields, velocity profiles and the wall shear stress evolution including the void fraction from 55% to 85%, are considered in order to identify the different parameters of the developed model to determine the nature of the flow, the foams rheological behavior and the foam flow regime along the length of the channel. The numerical study (CFD) is applied for two conditions: the first one for a wet foam flow with a void fraction of 70% and a foam flow velocity of 2cm/s (one-dimensional regime) and the second one, for a foam quality of 55% and a flow rate of 6cm/s. The numerical evolutions are identical to experimental ones for these same conditions. Therefore, we can conclude that the Herschel-Bulkley rheological model can correctly describe the aqueous foams fix behavior.


2014 ◽  
Vol 56 (6) ◽  
Author(s):  
Debora Finocchio ◽  
Salvatore Barba ◽  
Stefano Santini ◽  
Antonella Megna

The Altotiberina low-angle normal fault in central Italy has been a focus of many recent studies. Although the existence of this fault has long been known, its seismicity and relationship to other faults are still debated. We present a 2D elastoplastic finite-element model that reproduces the interseismic deformation of the Altotiberina Fault. The model predictions are compared to observed geodetic velocities, stress orientations and geological data. The influence of the Altotiberina Fault on interseismic evolution is tested by building several models with different boundary conditions. The best model is 180 km long, 40 km deep and contains two layers with different rheological parameters, two ramps, two faults and four freely slipping segments. The main factors contributing to the large-scale interseismic deformation include basal traction, rheology and the Altotiberina Fault itself, whereas the local, small-scale variations are due to two secondary high-angle faults.


2021 ◽  
Vol 502 (2) ◽  
pp. 2446-2473
Author(s):  
Peter Erwin ◽  
Anil Seth ◽  
Victor P Debattista ◽  
Marja Seidel ◽  
Kianusch Mehrgan ◽  
...  

ABSTRACT We present detailed morphological, photometric, and stellar-kinematic analyses of the central regions of two massive, early-type barred galaxies with nearly identical large-scale morphologies. Both have large, strong bars with prominent inner photometric excesses that we associate with boxy/peanut-shaped (B/P) bulges; the latter constitute ∼30 per cent of the galaxy light. Inside its B/P bulge, NGC 4608 has a compact, almost circular structure (half-light radius Re ≈ 310 pc, Sérsic n = 2.2) we identify as a classical bulge, amounting to 12.1 per cent of the total light, along with a nuclear star cluster (Re ∼ 4 pc). NGC 4643, in contrast, has a nuclear disc with an unusual broken-exponential surface-brightness profile (13.2 per cent of the light), and a very small spheroidal component (Re ≈ 35 pc, n = 1.6; 0.5 per cent of the light). IFU stellar kinematics support this picture, with NGC 4608’s classical bulge slowly rotating and dominated by high velocity dispersion, while NGC 4643’s nuclear disc shows a drop to lower dispersion, rapid rotation, V–h3 anticorrelation, and elevated h4. Both galaxies show at least some evidence for V–h3correlation in the bar (outside the respective classical bulge and nuclear disc), in agreement with model predictions. Standard two-component (bulge/disc) decompositions yield B/T ∼ 0.5–0.7 (and bulge n > 2) for both galaxies. This overestimates the true ‘spheroid’ components by factors of 4 (NGC 4608) and over 100 (NGC 4643), illustrating the perils of naive bulge-disc decompositions applied to massive barred galaxies.


2016 ◽  
Vol 46 (9) ◽  
pp. 1138-1144 ◽  
Author(s):  
M. Maltamo ◽  
O.M. Bollandsås ◽  
T. Gobakken ◽  
E. Næsset

This study considered airborne laser scanning (ALS) based aboveground biomass (AGB) prediction in mountain forests. The study area consisted of a long transect from southern Norway to northern parts of the country with wide ranges of elevation along a long latitudinal gradient (58°N–69°N). This transect was covered by ALS data and field data from 238 plots. AGB was modeled using different types of predictor variables, namely ALS metrics, variables related to growing conditions (elevation, latitude, and climatic variables), and tree species information. Modelling of AGB in the long transect covering diverse mountainous forest conditions was challenging: the RMSE values were rather large (37%–70%). The effects of growing conditions on model predictions were minor. However, species information was essential to improve accuracy. The analysis revealed that when doing inventories of spruce-dominated areas, all plots should be pooled together when the models are developed, whereas if pine or deciduous species dominate the area in question, separate dominant species-wise models should be constructed.


2018 ◽  
Vol 14 (A30) ◽  
pp. 319-322 ◽  
Author(s):  
M. Kierdorf ◽  
S. A. Mao ◽  
A. Fletcher ◽  
R. Beck ◽  
M. Haverkorn ◽  
...  

AbstractAn excellent laboratory for studying large scale magnetic fields is the grand design face-on spiral galaxy M51. Due to wavelength-dependent Faraday depolarization, linearly polarized synchrotron emission at different radio frequencies gives a picture of the galaxy at different depths: Observations at L-band (1 – 2 GHz) probe the halo region while at C- and X-band (4 – 8 GHz) the linearly polarized emission probe the disk region of M51. We present new observations of M51 using the Karl G. Jansky Very Large Array (VLA) at S-band (2 – 4 GHz), where previously no polarization observations existed, to shed new light on the transition region between the disk and the halo. We discuss a model of the depolarization of synchrotron radiation in a multilayer magneto-ionic medium and compare the model predictions to the multi-frequency polarization data of M51 between 1 – 8 GHz. The new S-band data are essential to distinguish between different models. Our study shows that the initial model parameters, i.e. the total regular and turbulent magnetic field strengths in the disk and halo of M51, need to be adjusted to successfully fit the models to the data.


2019 ◽  
Vol 286 ◽  
pp. 09003
Author(s):  
H. Rachid ◽  
M. Ouazzani Touhami

In this paper, we study theoretically the peristaltic transport of a generalized four-parameter plastic fluid in a circular cylindrical tube. The present fluid model is presented for the rheological characterization of inelastic fluid foods. Long wavelength and low Reynolds number approximations are taken into account to get solution. The effects of embedded parameters on pressure rise, frictional force and especially on the mechanical efficiency have been numerically displayed and physically discussed.


Author(s):  
Dayane Izidoro ◽  
Maria-Rita Sierakowski ◽  
Nina Waszczynskyj ◽  
Charles W. I. Haminiuk ◽  
Agnes de Paula Scheer

The effects of ingredients on the sensory evaluation and rheological behavior of two brands of mayonnaise were examined in this work. Mayonnaise samples were examined by Analytical Descriptive Test and Ranking Test of Preference. The rheological parameters were determined at 25°C using a concentric cylinder Brookfield rheometer with a spindle SC4-34. The results showed that standard mayonnaise as opposed to low-fat mayonnaise gained higher grades for most sensory attributes. All samples were found to exhibit non-Newtonian pseudoplastic behavior described by Herschel–Bulkley model. A decrease in the yield stress, viscosity and shear stress with the decrease in oil content was observed in all products, which confirm that the rheological characterization is capable of distinguishing rather well between mayonnaises made with different formulation.


Author(s):  
Hamid Reza Nazif ◽  
Hassan Basirat Tabrizi ◽  
Farhad A Farhadpour

Three-dimensional, transient turbulent particulate flow in an FCC riser is modeled using an Eulerian/Granular approach. The turbulence in the gas phase is described by a modified realizable (kg-?g) closure model and the kinetic theory of granular flow (KTGF) is employed for the particulate phase. Separate simulations are conducted for a rectangular and a cylindrical riser with similar dimensions. The model predictions are validated against experimental data of Sommerfeld et al (2002) and also compared with the previously reported LES-KTGF simulations of Hansen et al (2003) for the rectangular riser. The (kg-?g)-KTGF model does not perform as well as the LES-KTGF model for the riser with a rectangular cross section. This is because, unlike the more elaborate LES-KTGF model, the simpler (kg-?g)-KTGF model cannot capture the large scale secondary circulations induced by anisotropic turbulence at the corners of the rectangular riser. In the cylindrical geometry, however, the (kg-?g)-KTGF model gives good prediction of the data and is a viable alternative to the more complex LES-KTGF model. This is not surprising as the circulations in the riser with a circular cross section are due to the curvature of the walls and not due to the presence of sharp corners.


Author(s):  
Carlos Arroyo Osso ◽  
T. Gunnar Johansson ◽  
Fredrik Wallin

In most designs of two-spool turbofan engines, intermediate turbine duct (ITD’s) are used to connect the high-pressure turbine (HPT) with the low-pressure turbine (LPT). Demands for more efficient engines with reduced emissions require more “aggressive ducts”, ducts which provide both a higher radial offset and a larger area ratio in the shortest possible length, while maintaining low pressure losses and avoiding non-uniformities in the outlet flow that might affect the performance of the downstream LPT. The work presented in this paper is part of a more comprehensive experimental and computational study of the flowfield and the heat transfer in an aggressive ITD. The main objectives of the study were to obtain an understanding of the mechanisms governing the heat transfer in ITD’s and to obtain high quality experimental data for the improvement of the CFD-based design tools. This paper consists of two parts. The first one, this one, presents and discusses the results of the experimental study. In the second part, a comparison between the experimental results and a numerical analysis is presented. The duct studied was a state-of-the-art “aggressive” design with nine thick non-turning structural struts. It was tested in a large-scale low-speed experimental facility with a single-stage HPT. In this paper measurements of the steady convective heat transfer coefficient (HTC) distribution on both endwalls and on the strut for the duct design inlet conditions are presented. The heat transfer measurement technique used is based on infrared-thermography. Part of the results of the flow measurements is also included.


Author(s):  
Alexandra Simonenko ◽  
Anne Carlier

AbstractThis article investigates the spread of the le/la/les-forms in the diachrony of French on the basis of large-scale corpora. It focuses on the issue of their “mixed” distribution viz. the observation that during a long period of time the le/la/les-forms in French do not pattern as either (anaphoric) demonstratives from which they originate (Late Latin ille), nor as (uniqueness-based) definites, which they end up becoming in Modern French. We model the phenomenon as a competition between two grammars which ascribe different Logical Forms to the l-forms and test model predictions in contexts which differ with respect to whether they satisfy the relevant conditions for either demonstrative or definite semantics. We also suggest that this change was part of a larger change involving the spread of presupposition triggers within noun phrases. We show that our model correctly predicts the relative rates of determiner spread in various contexts.


Sign in / Sign up

Export Citation Format

Share Document