Improvements in the Dehydration Process of Heavy Crude Oil, Using CFD: Case Study Campo Quifa-Colombia

Author(s):  
Miguel Asuaje Tovar ◽  
Nelson Benítez ◽  
Dario Quintero ◽  
Myriam R. Gaviria ◽  
Eduardo Díaz ◽  
...  

Quifa is one of the largest heavy-oil fields in Colombia with a total fluids production of 1,320 KBPD with a water cut of 96.7% through 272 active wells, approximatively. Facilities to handle such amounts of water, have to deliver crude oil under market specifications and clean up the water prior to its reinjection, require several stages of oil-water separation. The first phase in oil water separation process is Free Water Knock Out vessels (FWKO), which are in charge of extracting to extract most of the water, frequently assisted by heat or chemical products which help gravity to perform the separation. The treated water (which contain still some oil) is then directed to the following stage separation carried out by the big tanks called skimmers, which are designed to clean the water down to a few ppm of oil. Nowadays, even though the advance on computational calculations has increased, these tanks are frequently designed using only the concept of time of residence and considering the internal velocities to be as low as possible, so that improve separation. For these last considerations, FWKOs and Skimmers could have internal components like manifold or baffles. The present work explains a CFD (Computational Fluids Dynamics) study of different internal manifolds configurations, which aimed to improve the fluid distributions and velocities inside the tanks of Quifa field. Simulations were performed by CFX commercial software under two-phase flow eulerian-eulerian homogeneous model. The optimum manifold configuration, achieves uniform static pressure and flow distribution across the entire main pipe, reducing secondary internal flows and hydraulic losses. Then, CFD calculations were carried out in the whole skimmer tank, using the original manifold and the improved one. Results show an increase in the separation process, due to the new internal velocity field. Supported by the simulations results, these geometrical improvements in the internal manifolds were applied/constructed in one of the skimmer tanks in Quifa Field. Field results show an improvement on separation efficiency, going from 38% average efficiency in the original tanks (Skim-10 and Skim-30), up to 87% in the modified one (Skim-30). The quality of exit-water was reduced from 300 ppm average up to 77 ppm. The flow capacity of the skimmer 30 has been improved and can handle up to 600 KBFPD. This represents 62% more capacity than Skimmer 10, and 42% more than Skimmer 20.

2004 ◽  
Vol 126 (4) ◽  
pp. 553-564 ◽  
Author(s):  
C. Oropeza-Vazquez ◽  
E. Afanador ◽  
L. Gomez ◽  
S. Wang ◽  
R. Mohan ◽  
...  

The hydrodynamics of multiphase flow in a Liquid-Liquid Cylindrical Cyclone (LLCC) compact separator have been studied experimentally and theoretically for evaluation of its performance as a free water knockout device. In the LLCC, no complete oil-water separation occurs. Rather, it performs as a free-water knockout, delivering a clean water stream in the underflow and an oil rich stream in the overflow. A total of 260 runs have been conducted, measuring the LLCC separation efficiency for water-dominated flow conditions. For all runs, an optimal split-ratio (underflow to inlet flow rate ratio) exists, where the flow rate in the water stream is maximum, with 100% watercut. The value of the optimal split-ratio depends upon the existing inlet flow pattern, and varies between 60% and 20%. For split-ratios higher than the optimal one, the watercut in the underflow stream decreases as the split-ratio increases. A novel mechanistic model has been developed for the prediction of the complex flow behavior and the separation efficiency in the LLCC. Comparisons between the experimental data and the LLCC model predictions show excellent agreement. The model is capable of predicting both the trend of the experimental data as well as the absolute measured values. The developed model can be utilized for the design and performance analysis of the LLCC.


2021 ◽  
Vol 18 (4) ◽  
pp. 887-899
Author(s):  
Yanling Tian ◽  
Jiekai Feng ◽  
Zexin Cai ◽  
Jiaqi Chao ◽  
Dawei Zhang ◽  
...  

AbstractReckless discharge of industrial wastewater and domestic sewage as well as frequent leakage of crude oil have caused serious environmental problems and posed severe threat to human survival. Various nature inspired superhy-drophobic surfaces have been successfully applied in oily water remediation. However, further improvements are still urgently needed for practical application in terms of facile synthesis process and long-term durability towards harsh environment. Herein, we propose a simple one-step dodecyl mercaptan functionalization method to fabricate Super-hydrophobic-Superoleophilic Copper Mesh (SSCM). The prepared SSCM possesses excellent water repellence and oil affinity, enabling it to successfully separate various oil-water mixtures with high separation efficiency (e.g., > 99% for hexadecane-water mixture). The SSCM retains high separating ability when hot water and strong corrosive aqueous solutions are used to simulate oil-water mixtures, indicating remarkable chemical durability of the dodecyl mercaptan functionalized copper mesh. Additionally, the efficiency can be well maintained during 50 cycles of separation, and the water repellence is even stable after storage in air for 120 days, demonstrating the reusability and long-term stability of the SSCM. Furthermore, the functionalized mesh also shows good mechanical robustness towards abrasion by sandpaper, and oil-water separation efficiency of > 96% can be obtained after 10 cycles of abrasion. The reported one-step dodecyl mercaptan functionalization could be a simple method for increasing the water repellence of copper mesh, and thereby be a great candidate for treating large-scale oily wastewater in harsh environments.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Peng Hong ◽  
Zhu Liu ◽  
Yang Gao ◽  
Yubin Chen ◽  
Mingxun Zhuang ◽  
...  

Superhydrophobic sponge as potential absorbing material for oil/water separation is attracting great attention recently. However, there are still some challenges to feasibly fabricate superhydrophobic sponge with large scale and low cost. Herein, a novel photochromic superhydrophobic melamine sponge (PDMS-SP sponge) is fabricated by facilely dip-coating and thermocuring of hydroxyl-terminated polydimethylsiloxanes mixed with photochromic spiropyran. FT-IR, EDS, and XPS results confirm the successful coating of PDMS-SP upon melamine sponge. The resultant sponge not only possesses excellent water repellency with a contact angle of 154.5° and oil-water separation efficiency with an oil absorption capacity of 48–116 folds of itself weight, but also shows photochromic phenomenon between colorless and purple when it is successively exposed to UV irradiation and visible light.


Polymers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 775 ◽  
Author(s):  
Fei Sun ◽  
Ting-Ting Li ◽  
Haitao Ren ◽  
Qian Jiang ◽  
Hao-Kai Peng ◽  
...  

This study aims to produce polypropylene (PP)/titanium dioxide (TiO2) melt-blown membranes for oil/water separation and photocatalysis. PP and different contents of TiO2 are melt-blended to prepare master batches using a single screw extruder. The master batches are then fabricated into PP/TiO2 melt-blown membranes. The thermal properties of the master batches are analyzed using differential scanning calorimetry and thermogravimetric analysis, and their particle dispersion and melt-blown membrane morphology are evaluated by scanning electron microscopy. TiO2 loaded on melt-blown membranes is confirmed by X-ray diffraction (XRD). The oil/water separation ability of the melt-blown membranes is evaluated to examine the influence of TiO2 content. Results show that the thermal stability and photocatalytic effect of the membranes increase with TiO2 content. TiO2 shows a good dispersion in the PP membranes. After 3 wt.% TiO2 addition, crystallinity increases by 6.4%, thermal decomposition temperature increases by 25 °C compared with pure PP membranes. The resultant PP/TiO2 melt-blown membrane has a good morphology, and better hydrophobicity even in acetone solution or 6 h ultraviolet irradiation, and a high oil flux of about 15,000 L·m−2·h−1. Moreover, the membranes have stabilized oil/water separation efficiency after being repeatedly used. The proposed melt-blown membranes are suitable for mass production for separating oil from water in massively industrial dyeing wastewater.


Author(s):  
Alaaeddin Elhemmali ◽  
Shams Anwar ◽  
Yahui Zhang ◽  
John Shirokoff

2020 ◽  
Vol 510 ◽  
pp. 145402 ◽  
Author(s):  
Hao Zhang ◽  
Li Yu ◽  
Xiaohong Ma ◽  
Yapei Peng ◽  
Junqing Hu ◽  
...  

Polymers ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 442 ◽  
Author(s):  
Mingguang Yu ◽  
Qing Wang ◽  
Wenxin Yang ◽  
Yonghang Xu ◽  
Min Zhang ◽  
...  

In this paper, we present a facile and efficient strategy for the fabrication of magnetic, durable, and superhydrophobic cotton for oil/water separation. The superhydrophobic cotton functionalized with Fe3O4 magnetic nanoparticles was prepared via the in situ coprecipitation of Fe2+/Fe3+ ions under ammonia solution on cotton fabrics using polyvinylpyrrolidone (PVP) as a coupling agent and hydrophobic treatment with tridecafluorooctyl triethoxysilane (FAS) in sequence. The as-prepared cotton demonstrated excellent superhydrophobicity with a water contact angle of 155.6° ± 1.2° and good magnetic responsiveness. Under the control of the external magnetic field, the cotton fabrics could be easily controlled to absorb the oil from water as oil absorbents, showing high oil/water separation efficiency, even in hot water. Moreover, the cotton demonstrated remarkable mechanical durable properties, being strongly friction-resistant against sandpaper and finger wipe, while maintaining its water repellency. This study developed a novel and efficient strategy for the construction of magnetic, durable, and superhydrophobic biomass-based adsorbent for oil/water separation, which can be easily scaled up for practical oil absorption.


Sign in / Sign up

Export Citation Format

Share Document