Experimental and Numerical Investigation of Small Particle Erosion in Gas Dominated Multiphase Flow

2021 ◽  
Author(s):  
G. Haider ◽  
M. Othayq ◽  
S. A. Shirazi

Abstract Sand production is a significant challenge in petroleum engineering, and specifically in multiphase gas condensate wells where small amount of liquid is present with the gas. Sand particles entrained in multiphase flow can severely affect the integrity of fluid transportation structures such as pipelines, elbows, and reducers. Traditionally, sand management techniques such as sand screens and gravel packs are used to control sand. However, small particles can pass through these controls. Furthermore, small particles can block a part of the sand screen, causing high velocities in other sections which can cause erosion of the sand screen openings allowing larger particles to pass through which in turn cause more erosion. Furthermore, these small particles are highly susceptible to turbulent regions of flow and can cause severe erosion in these regions. Hence, it is critically important to understand the erosion caused by small particles. This study investigates the effect of small particles on erosion. Small particle erosion is more severe in gas dominated multiphase flows such as annular and mist flows than liquid dominated bubbly and slug flows. A 90-degree standard elbow is used in the experimental and numerical analyses because of its high erosion vulnerability and its importance in pipeline applications. This is because the flow changes direction in this geometry which has complex implications on erosion. This study follows the below mentioned research method: 1) Flow Visualization Study: To understand the flow behavior in bend. 2) Paint-Removal Study: To visualize the progress of paint-removal pattern and to identify the erosion hot spots caused by sand particles. 3) Multiphase Erosion Experiments: To determine the wall thickness loss on identified hot spots using fix-mounted temperature compensated ultrasonic measurement technique. 4) Computational Fluid Dynamics (CFD) Study: To compare erosion patterns with CFD simulations of multiphase flow. Furthermore, the effects of particle size on erosion ratio and its distribution in pipe bends are discussed. The CFD results of larger particles agree better with experimental data than for smaller particles using existing erosion models.

Author(s):  
Siamack A. Shirazi ◽  
Brenton S. McLaury

Solid particle erosion is a major problem in many industrial applications where solids are entrained in gas and/or liquid flows. For example, erosion of production equipment, well tubing and fittings is a major operating problem that costs the petroleum industry millions of dollars each year. Entrained sand particles in the oil/gas production fluid impinge on the inner surfaces of the pipes, fittings, and valves that result in solid particle erosion. In certain production situations with corrosive fluids, erosion is compounded with corrosion causing severe erosion-corrosion. Even in situations when sand control means are utilized such as gravel packing and sand screens, small sand particles can plug sand screens promoting higher flow velocities through other portions of the screens causing failure and allowing sand production. Erosion can cause severe damage to the piping and equipment wall, resulting in loss of equipment and production downtime. Solid particle erosion is a mechanical process by which material is removed gradually from a solid surface due to repeated impingement of small solid particles on the metal surface. The erosion phenomenon is highly complicated due to the number of parameters affecting the erosion severity, such as production flow rate, sand rate, fluid properties, flow regime, sand properties, sand shape and size, wall material of equipment, and geometry of the equipment. For ductile materials, erosion is caused by localized deformation and cutting action from repeated particle impacts. It is well known that solid particle erosion rates are a strong function of the impacting velocity of particles and also the mass of impacting particles. Predicting solid particle erosion in multiphase flow is a complex task due to existence of different flow patterns. The existence of different flow patterns and sand and liquid holdup in vertical and horizontal pipes means that a unique erosion model has to be developed for each flow regime if the model is to account for the number and velocity of impacting particles. The particle impact velocity is affected by the pipe geometry, carrying fluid properties and velocity, flow pattern, particle size and distribution in the flow. Among different multiphase flow patterns in horizontal and vertical flows, severe erosion damage can occur in annular and slug flows with high gas velocities and low liquid velocities. Although there is a lack of accurate mechanistic models to predict solid particle erosion, there is a need to develop engineering prediction models for multiphase flows. Earlier erosion calculation procedures in multiphase flow were primarily based on empirical data and the accuracy of those “empirical” models was limited to the flow conditions of the experiments. A framework for developing a model has been established for predicting erosion rates of elbows in multiphase flow. The model considers the effects of particle velocities in gas and liquid phases upstream of the elbow. Local fluid velocities in multiphase flow are used to determine representative particle impact velocities. Also based on data representing sand holdup for several flow regimes, the masses of impacting particles are estimated. Erosion experiments are also conducted on elbows in two-inch and three-inch large scale multiphase flow loops with gas, liquid and sand flowing in vertical and horizontal test sections. Based on the experimental data for different flow regimes including slug, wet gas and annular flow a method for improving a previous model is discussed and is being implemented to predict erosion rates in multiphase flow.


Author(s):  
H.-J. Ou

The understanding of the interactions between the small metallic particles and ceramic surfaces has been studied by many catalyst scientists. We had developed Scanning Reflection Electron Microscopy technique to study surface structure of MgO hulk cleaved surface and the interaction with the small particle of metals. Resolutions of 10Å has shown the periodic array of surface atomic steps on MgO. The SREM observation of the interaction between the metallic particles and the surface may provide a new perspective on such processes.


Author(s):  
L. D. Marks ◽  
J. P. Zhang

A not uncommon question in electron microscopy is what happens to the momentum transferred by the electron beam to a crystal. If the beam passes through a crystal and is preferentially diffracted in one direction, is the momentum ’lost’ by the beam transferred to the crystal? Newton’s third law implies that this must be the case. Some experimental observations also indicate that this is the case; for instance, with small particles if the particles are supported on the top surface of a film they often do not line up on the zone axis, but if they are on the bottom they do. However, if momentum is transferred to the crystal, then surely we are dealing with inelastic scattering, not elastic scattering and is not the scattering probability different? In addition, normally we consider inelastic scatter as incoherent, and therefore the part of the electron wave that is inelastically scattered will not coherently interfere with the part of the wave that is scattered; but, electron holography and high resolution electron microscopy work so the wave passing through a specimen must be coherent with the wave that does not pass through the specimen.


2020 ◽  
Vol 117 (6) ◽  
pp. 619
Author(s):  
Rui Xu ◽  
Haitao Ling ◽  
Haijun Wang ◽  
Lizhong Chang ◽  
Shengtao Qiu

The transient multiphase flow behavior in a single-strand tundish during ladle change was studied using physical modeling. The water and silicon oil were employed to simulate the liquid steel and slag. The effect of the turbulence inhibitor on the slag entrainment and the steel exposure during ladle change were evaluated and discussed. The effect of the slag carry-over on the water-oil-air flow was also analyzed. For the original tundish, the top oil phase in the impact zone was continuously dragged into the tundish bath and opened during ladle change, forming an emulsification phenomenon. By decreasing the liquid velocities in the upper part of the impact zone, the turbulence inhibitor decreased considerably the amount of entrained slag and the steel exposure during ladle change, thereby eliminating the emulsification phenomenon. Furthermore, the use of the TI-2 effectively lowered the effect of the slag carry-over on the steel cleanliness by controlling the movement of slag droplets. The results from industrial trials indicated that the application of the TI-2 reduced considerably the number of linear inclusions caused by ladle change in hot-rolled strip coils.


Author(s):  
A. K. M. Monayem Mazumder ◽  
Ting Wang ◽  
Jobaidur R. Khan

To help design a mild-gasifier, a reactive multiphase flow computational model has been developed in Part 1 using Eulerian-Eulerian method to investigate the thermal-flow and gasification process inside a conceptual, hybrid entrained-flow and fluidized-bed mild-gasifier. In Part 2, the results of the verifications and the progressive development from simple conditions without particles and reactions to complicated conditions with full reactive multiphase flow are presented. Development of the model starts from simulating single-phase turbulent flow and heat transfer in order to understand the thermal-flow behavior, followed by introducing seven global, homogeneous gasification reactions progressively added one equation at a time. Finally, the particles are introduced, and heterogeneous reactions are added in a granular flow field. The mass-weighted, adiabatic flame temperature is validated through theoretical calculation and the minimum fluidization velocity is found to be close to Ergun’s correlation. Furthermore, the predicted exit species composition is consistent with the equilibrium values.


2021 ◽  
Author(s):  
Soheila Taghavi ◽  
Ismarullizam Mohd Ismail ◽  
Haavard Aakre ◽  
Vidar Mathiesen

Abstract To increase the production and recovery of marginal, mature, and challenging oil reservoirs, developing new inflow control technologies is of great importance. In cases where production of surrounding reservoir fluids such as gas and water can cause negative effects on both the total oil recovery and the amounts of energy required to drain the reservoir, the multiphase flow performances of these technologies are of particular significance. In typical cases, a Long Horizontal Well (LHW) will eventually start producing increasing amounts of these fluids. This will cause the Water Cut (WC) and/or Gas Oil Ratio (GOR) to rise, ultimately forcing the well to be shut down even though there still are considerable amounts of oil left in the reservoir. In earlier cases, Inflow Control Devices (ICD) and Autonomous Inflow Control Devices (AICD) have proven to limit these challenges and increase the total recovery by balancing the influx along the well and delaying the breakthrough of gas and/or water. The Autonomous Inflow Control Valve (AICV) builds on these same principles, and in addition has the ability to autonomously close when breakthrough of unwanted gas and/or water occurs. This will even out the total drawdown in the well, allowing it to continue producing without the WC and/or GOR reaching inacceptable limits. As part of the qualification program of the light-oil AICV, extensive flow performance tests have been carried out in a multiphase flow loop test rig. The tests have been performed under realistic reservoir conditions with respect to variables such as pressure and temperature, with model oil, water, and gas at different WC's and GOR's. Conducting these multiphase experiments has been valuable in the process of establishing the AICV's multiphase flow behavior, and the results are presented and discussed in this paper. Single phase performance and a comparison with a conventional ICD are also presented. The results display that the AICV shows significantly better performance than the ICD, both for single and multiphase flow. A static reservoir modelling method have been used to evaluate the AICV performance in a light-oil reservoir. When compared to a screen-only completion and an ICD completion, the simulation shows that a completion with AICV's will outperform the above-mentioned completions with respect to WC and GOR behavior. A discussion on how this novel AICV can be utilized in marginal, mature, and other challenging reservoirs will be provided in the paper.


2020 ◽  
Vol 8 (4) ◽  
pp. 1386-1403 ◽  
Author(s):  
Jianhong Fu ◽  
Yu Su ◽  
Wei Jiang ◽  
Xingyun Xiang ◽  
Bin Li

Author(s):  
Meihua Zhang ◽  
Amy Zheng ◽  
Zhongquan C Zheng ◽  
Michael Zhuo Wang

A microfluidic-based microscale cell-culture device, or a cells-on-a-chip device, provides a well-controlled environment with physiologically realistic factors that emulate the organ-to-organ network of human body. In the microsystem, the in vivo situation can be resembled closely by controlling the chip geometry model, medium flow behavior, medium-to-cell density ratio, and other fluid dynamic parameters. This study is to develop multiphase models to carry out experiments and simulate flow in such devices. A standard soft lithography method is used to build the three-dimensional microfluidic chips. A definitely good qualitative and reasonably good quantitative agreement is obtained between the experimental and simulation results for particle velocity in the microfluidic chip, which validates the numerical simulation method. The cell deposition rate influenced by the flow shear is studied. The influence of gravity, inlet velocity, and cell injection number on cell concentrations are also investigated. Comparisons of different designs of cells-on-a-chip devices are addressed in the study. The physics of flow dynamics and related cell particle motion due to each of the above-mentioned variables are discussed. The results show that the multiphase flow model is promising to be used for simulating cell particle deposition and concentration for the purpose of design of cells-on-a-chip devices.


Sign in / Sign up

Export Citation Format

Share Document