Downsizing the Electric Motors of Energy-Efficient Self-Contained Electro-Hydraulic Systems by Using Hybrid Technologies

Author(s):  
Damiano Padovani ◽  
Søren Ketelsen ◽  
Lasse Schmidt

Abstract The ongoing tendency toward the electrification of hydraulic systems, mainly in the form of self-contained solutions, poses design challenges in high-power applications. An electric motor drives positive-displacement machines used to control the motion of the hydraulic actuator (nonhybrid systems encompassing one or two pumps exist in the technical literature). All the power managed by the actuator passes through the electric motor, which leads to often oversized arrangements. These detrimental characteristics are especially pronounced when the power level increases approximately above 35–40 kW. Therefore, this research paper presents and studies a self-contained, electro-hydraulic, hybrid architecture intended to downsize the electric motor while maintaining the high-power output of the nonhybrid counterpart. After introducing the sizing process for the energy storage device and developing a suitable control strategy for the hybrid subsystem, the proposed concept is validated via high-fidelity dynamic models. The rated power of the electric prime mover can be cut by 70% in the considered application (a mid-size, knuckle-boom crane with an installed power of about 46 kW) without altering the performance in terms of motion control. The additional mass (about 310 kg) of the hybrid system is not expected to affect the load-carrying capacity significantly. As a result, the hybridization of self-sufficient systems is technically feasible for high-power applications. Drawbacks related to the system cost-effectiveness might, however, be experienced. An application-driven cost analysis should be conducted before implementing such a solution.

1994 ◽  
Vol 37 (3) ◽  
pp. 347-351
Author(s):  
A. V. Myl'nikov

2021 ◽  
Vol 23 (1) ◽  
pp. 37-41
Author(s):  
Darko Babunski ◽  
◽  
Emil Zaev ◽  
Atanasko Tuneski ◽  
Laze Trajkovski ◽  
...  

Friction is a repeatable and undesirable problem in hydraulic systems where always has to be a tendency for its removal. In this paper, the friction model is presented through which the most accurate results are achieved and the way of friction compensation, approached trough technique presented with the mathematical model of a hydraulic cylinder of a hydro turbine wicket gate controlled by a servomechanism. Mathematical modelling of a servo mechanism and hydraulic actuator, and also the simulation of hydraulic cylinder as a part of a hydro turbine wicket gate hydraulic system where the stick-slip phenomenon is present between the system components that are in contact is presented. Applied results in this paper and the theory behind them precisely demonstrate under what circumstances the stick-slip phenomenon appears in such a system. The stick-slip effect is simulated using Simulink and Hopsan software and the analysis of the results are given in this paper. Removal of the stick-slip effect is presented with the design of a cascade control implemented to control the behaviour of the system and remove the appearance of a jerking motion.


2019 ◽  
Vol 11 (7) ◽  
pp. 658-665
Author(s):  
Daniel Kienemund ◽  
Nicole Bohn ◽  
Thomas Fink ◽  
Mike Abrecht ◽  
Walter Bigler ◽  
...  

AbstractLow loss, ferroelectric, fully-printed varactors for high-power matching applications are presented. Piezoelectric-induced acoustic resonances reduce the power handling capabilities of these varactors by lowering the Q-factor at the operational frequency of 13.56 MHz. Here, a quality factor of maximum 142 is achieved with an interference-based acoustic suppression approach utilizing double metal–insulator–metal structures. The varactors show a tunability of maximum 34% at 300 W of input power. At a power level of 1 kW, the acoustic suppression technique greatly reduces the dissipated power by 62% from 37 W of a previous design to 14.2 W. At this power level, the varactors remain tunable with maximum 18.2% and 200 V of biasing voltage.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Hélène Lalo ◽  
Lara Leclerc ◽  
Jérémy Sorin ◽  
Jérémie Pourchez

AbstractThe reliable characterization of particle size distribution and nicotine delivery emitted by electronic cigarettes (ECs) is a critical issue in their design. Indeed, a better understanding of how nicotine is delivered as an aerosol with an appropriate aerodynamic size is a necessary step toward obtaining a well-designed nicotine transfer from the respiratory tract to the bloodstream to better satisfy craving and improve smoking cessation rates. To study these two factors, recent models of EC devices and a dedicated vaping machine were used to generate aerosols under various experimental conditions, including varying the EC power level using two different types of atomizers. The aerodynamic particle sizing of the resulting aerosol was performed using a cascade impactor. The nicotine concentration in the refill liquid and the aerosol droplet was quantified by liquid chromatography coupled with a photodiode array. The vaporization process and the physical and chemical properties of the EC aerosol were very similar at 15 watts (W) and 25 W using the low-power atomizer but quite distinct at 50 W using the high-power atomizer, as follows: (1) the mass median aerodynamic diameters ranged from 1.06 to 1.19 µm (µm) for low power and from 2.33 to 2.46 µm for high power; (2) the nicotine concentrations of aerosol droplets were approximately 11 mg per milliliter (mg/mL) for low power and 17 mg/mL for high power; and (3) the aerosol droplet particle phase of the total nicotine mass emitted by EC was 60% for low power and 95% for high power. The results indicate that varying the correlated factors (1) the power level and (2) the design of atomizer (including the type of coil and the value of resistance used) affects the particle-size distribution and the airborne nicotine portioning between the particle phase and the gas phase in equilibrium with the airborne droplets.


Sign in / Sign up

Export Citation Format

Share Document