Flow Studies on a Centrifugal Compressor Stage With Low Solidity Diffuser Vanes

Author(s):  
Prasad Mukkavilli ◽  
G. Rama Raju ◽  
A. Dasgupta ◽  
G. V. Ramana Murty ◽  
K. V. Jagadeshwar Chary

Diffusers are found to play a significant role in the performance of centrifugal compressors. Extensive studies have been in progress in various research laboratories for improvement of performance with various types of diffusers. One such effort for study of performance of a centrifugal compressor stage with Low Solidity Diffuser (LSD) vanes is presented in this paper. The study was conducted at a tip mach number of 0.35. An exclusive test rig was set up for carrying out these flow studies. The LSD vane is formed using standard NACA profile with marginal modification at the trailing edge region. The study encompasses the variation of setting angle of the LSD vane and the vane solidity. The effect of solidity and the setting angle on overall stage performance is evaluated in terms of flow coefficient, head coefficient and efficiency normalised with respect to these parameters for the case of vaneless diffuser at design flow. Improvement in performance as well as static pressure recovery was observed with LSD as compared to vaneless diffuser configuration. It is concluded from these studies that there is an optimum solidity and stagger angle for the given stage with LSD vanes for the chosen configuration.

2021 ◽  
Author(s):  
Louis Larosiliere ◽  
Vishal Jariwala ◽  
Kapil Panchal

Abstract Efficient and diametrically compact very high flow coefficient stages with wide operability are desirable for economic reasons in many process multistage centrifugal compressor applications. Such stages present special aerodynamic and mechanical design challenges. There is often a sizeable efficiency lapse rate as well as substantial reduction in useable operating range for traditional stages having design flow coefficients greater than 0.15 and moderate to high machine Mach numbers. This paper describes aerodynamic design and rig test validation of a very high flow coefficient (φ0 = 0.237) process centrifugal compressor stage. Some useful experience of the detailed design work required to navigate certain technical challenges and its rig test validation are reflected in the manuscript. A relatively high machine Mach number (MU ∼ 0.878) mixed-flow shrouded impeller matched with a curved radial vaneless diffuser and return channel was developed. Test results confirmed that the principal aerodynamic design intents were met or exceeded. A sensible design strategy guided by a well-anchored design method is shown to successfully extend an existing stage portfolio to very high-flow coefficients for multistage process centrifugal compressor applications.


Author(s):  
James M. Sorokes ◽  
Jason A. Kopko

The paper addresses the use of a rib style (partial height) vaned diffuser to improve the flowfield downstream of a high flow coefficient centrifugal impeller. Empirical and analytical (3-D CFD) results are presented for both the original vaneless diffuser and the replacement rib configuration. Comparisons are made between the CFD results and the data obtained through single stage rig (SSTR) testing. Comments are offered regarding the qualitative and quantitative agreement between the empirical and analytical results.


Author(s):  
T Sato ◽  
J M Oh ◽  
A Engeda

The flow in a radial vaneless diffuser downstream of a centrifugal compressor is highly complex, as the flow is turbulent, unsteady, viscous, and three-dimensional. Depending on the initial state of the end-wall boundary layers and the diffuser length, the flow may become fully developed or may separate from one of the walls. Therefore, to improve the diffuser performance, it is important to understand the flow field in the diffuser in detail. As the diffuser width is generally very small for most radial stages and an adverse pressure gradient exists, secondary flows are generated, making the flow fields more complicated. In addition, skewed boundary layers form on the wall surfaces. As flowrate is reduced, the flow field becomes more complicated and leads to rotating stall. This article presents detailed flow measurements in a vaneless diffuser of a centrifugal compressor stage with a very high flow coefficient radial impeller. Usually, centrifugal compressors with radial impellers are designed in the flow coefficient (ϕ) range ϕ = 0.01 - 0.16. Often, the need arises to design higher flow coefficient, ϕ, radial stages. Detailed measurements were carried out in the vaneless diffuser at seven radial positions downstream of a radial impeller designed for a very high flow coefficient of ϕ = 0.2. The experimental investigation was carried at four rotational speeds 13 000, 15 500, 18 000, and 20 500 r/min, but only the result of 20 500 r/min at near-design-point flowrate (5.11 kg/s) is reported in this article.


Author(s):  
T Sato ◽  
J M Oh ◽  
A Engeda

As user demands grew for improved performance and more reliable equipment and as compressor vendors sought improved analytical and design methodologies, the application of computational fluid dynamics (CFD) in the industrial world became a necessity. Fortunately, large increases in available, economic computing power together with development of improved computational methods now provide the industrial designer with much improved analytic capability. As CFD algorithms and software have continued to be developed and refined, it remains essential that validation studies be conducted in order to ensure that the results are both sufficiently accurate and can be obtained in a robust and predictable manner. Part I of this paper presented detailed flow measurements in a vaneless diffuser of a centrifugal compressor stage with a very high flow coefficient radial impeller, where measurements were carried out in the vaneless diffuser at seven radial positions downstream of the radial impeller designed for a very high flow coefficient of ϕ = 0.2. This paper, Part II, attempts to verify and validate the results numerically.


Author(s):  
Zhiheng Wang ◽  
Guang Xi

A low flow coefficient centrifugal compressor stage is characterized by the small relative outlet width, and is often one of the latter stages in the multistage compressor. The low flow coefficient stage is known to give lower stage efficiency in comparison with the conventional stage, which still leaves much more space to be improved with modern tools such as CFD techniques. In the paper the flow in a CO2 centrifugal compressor stage with a low design flow coefficient of 0.008 is simulated based on the 3D viscous CFD codes. The analysis shows the impeller gives a favorable performance over a wide range of low flow coefficient, but the high losses exist in the stationary components and this incurs the poor performance of the whole stage. In this case, the diffuser, the return channel and the meridional plane are redesigned. The redesigned stage has distinct improvements on the performance and the flow structure.


Author(s):  
Seralathan Sivamani ◽  
Roy Chowdhury Dibyakanti Ghosh

In order to reduce the energy losses associated due to diffusion in the centrifugal compressor stage, several radial diffuser designs have been tried and rotating vaneless diffuser is one among them. Forced rotating vaneless diffuser is formed by extending the impeller disks alone beyond the blade tip without affecting the blade tip geometry. Studies on completely replacing a stationary vaneless diffuser with rotating vaneless diffuser are not available in open domain yet. This paper reports the effect of rotating vaneless diffuser based on shroud extension concept on flow diffusion, performance and flow parameters in a centrifugal compressor stage at design and off-design flow conditions. A backward curved impeller with diffuser diameter ratio 1.40 is chosen for the present study. Rotating vaneless diffuser is formed by extending the impeller disks by 40% above the impeller exit diameter. The comparative studies are done with the same impeller having a stationary vaneless diffuser of equivalent diffuser diameter ratio in the downstream. Static pressure rise in RVD-ES configuration is higher compared to SVD and the energy coefficient improved by around 57.14% for RVD-ES over the entire flow range. The efficiency of RVD-ES and SVD are almost identical at Φ = 0.156. At design and other off-design flow coefficients, the efficiencies of RVD-ES are slightly lesser compared to SVD by 1.0 to 1.52%. The static pressure recovery coefficient of RVD-ES is higher than SVD. The stagnation pressure losses reduced drastically for RVD-ES. From the velocity vectors and contours of stagnation pressure distribution, it seen that additional energy is added to the fluid by the rotating walls of the vaneless diffuser. This results in increased kinetic energy of the fluid. Due to better diffusion process in RVD-ES, this results with a gain in increased static pressure rise with acceptable efficiency.


Author(s):  
Kiyotaka Hiradate ◽  
Hiromi Kobayashi ◽  
Takahiro Nishioka

This study experimentally and numerically investigates the effect of application of curvilinear element blades to fully-shrouded centrifugal compressor impeller on the performance of centrifugal compressor stage. Design suction flow coefficient of compressor stage investigated in this study is 0.125. The design guidelines for the curvilinear element blades which had been previously developed was applied to line element blades of a reference conventional impeller and a new centrifugal compressor impeller with curvilinear element blades was designed. Numerical calculations and performance tests of two centrifugal compressor stages with the conventional impeller and the new one were conducted to investigate the effectiveness of application of the curvilinear element blades and compare the inner flowfield in details. Despite 0.5% deterioration of the impeller efficiency, it was confirmed from the performance test results that the compressor stage with the new impeller achieved 1.7% higher stage efficiency at the design point than that with the conventional one. Moreover, it was confirmed that the compressor stage with the new impeller achieved almost the same off-design performance as that of the conventional stage. From results of the numerical calculations and the experiments, it is considered that this efficiency improvement of the new stage was achieved by suppression of the secondary flows in the impeller due to application of negative tangential lean. The suppression of the secondary flows in the impeller achieved uniformalized flow distribution at the impeller outlet and increased the static pressure recovery coefficient in the vaneless diffuser. As a result, it is thought that the total pressure loss was reduced downstream of the vaneless diffuser outlet in the new stage.


Author(s):  
A. Hildebrandt ◽  
T. Ceyrowsky

The present paper deals with the numerical and theoretical investigations of the effect of geometrical dimensions and 1D-design parameters on the impeller pressure slope of a transonic centrifugal compressor stage for industrial process application. A database being generated during the multi-objective and multi-point design process of a high flow coefficient impeller, comprising 545 CFD (Computational Fluid Dynamics) designs is investigated in off-design and design conditions by means of RANS (Reynolds Averaged Navier Stokes) simulation of an impeller with vaneless diffuser. For high flow coefficients of 0.16 < phi < 0.18, the CFD-setup has been validated against measurement data regarding stage and impeller performance taken from MAN test rig experimental data for a centrifugal compressor stage of similar flow coefficient. The paper aims at answering the question how classical design parameter, such as the impeller blade angle distribution, impeller suction diameter and camber line length affect the local and total relative diffusion and pressure slope towards impeller stall operation. A second order analysis of the CFD database is performed by cross-correlating the CFD data with results from impeller two-zone 1D modelling and a rapid loading calculation process by Stanitz and Prian. The statistical covariance of first order 1D-analysis parameters such as the mixing loss of the impeller secondary flow, the slip factor, impeller flow incidence is analyzed, thereby showing strong correlation with the design and off-design point efficiency and pressure slope. Finally, guide lines are derived in order to achieve either optimized design point efficiency or maximum negative pressure slope characteristics towards impeller stall operation.


Sign in / Sign up

Export Citation Format

Share Document