scholarly journals Heat Transfer and Pressure Drop Evaluation in Thin Wedge-Shaped Trailing Edge

Author(s):  
C. Carcassi ◽  
B. Facchini ◽  
L. Innocenti

In modern high loaded transonic turbines the aerodynamic losses of turbine airfoils are mostly covered by the thickness and the wedge angle of the blade trailing edges. Due to the aerodynamic requirements the thin trailing edges are the life limiting parts of the airfoils. The aerodynamic design requirements lead to trailing edge slots with extreme aspect ratio and huge fillet radius in relation to the internal slot geometry. In most cases, the conventional design tools are not validated for these geometries, therefore an improved knowledge of flow and heat transfer in this area is necessary. This paper discusses the measurements of endwall heat transfer coefficient and pressure drops in a wedge-shaped duct with two different turbulators arrangement. The first one is concerning five different long ribs (pedestals) configurations disposed streamwise while the other one is related to three configurations of staggered pin fins. Pedestals and pin fins stand vertically on the bottom surface of the wedge–shaped duct. This surface, named endwall, is coated with a thin layer of thermochromic liquid crystals and several transient tests are run to obtain detailed heat transfer coefficient distributions. Both for the pedestal and pin fins several parametric studies has been performed, varying both Reynolds number range (from 9000 to 27000) and turbulators configurations while outlet Mach number was set to 0.3 for all tests. Investigated pedestal configurations are different for turbulators spanwise pitch while pin fins geometry have different pin diameter values. In all cases the wedge duct angle is 10°. Results indicate that the smallest long ribs pitch and pin fin diameter are most recommended because of its significant endwall heat transfer and moderate pressure-drop penalty. Long ribs and pin-fins are aluminium made in order to evaluate an average value of the heat transfer coefficient on their side surface. So a valuation of global heat transfer coefficient in the internal trailing edge cooling duct become possible.

Author(s):  
S. Naik ◽  
S. Retzko ◽  
M. Gritsch ◽  
A. Sedlov

The trailing edge region of gas turbine blades is generally subjected to extremely high external heat loads due to the combined effects of high mach numbers and gas temperatures. In order to maintain the metal temperatures of these trailing edges to a level, which fulfils both the part mechanical integrity and turbine performance, highly efficient and reliable cooling of the trailing edges is required without increasing the coolant consumption. In this paper, the heat transfer and pressure drop characteristic of three different turbulator designs in a very high aspect ratio passage have been investigated. The turbulator designs included angled and tapered ribs, broken discrete ribs and V-shaped small chevrons ribs. The heat transfer and pressure drop characteristics of all the turbulator configurations was initially investigated via numerical predictions and subsequently in a scaled experimental perspex model. The experimental study was conducted for a range of operational Reynolds numbers and the TLC (thermochromic liquid crystal) method was used to measure the detailed heat transfer coefficients on all surfaces of the passage. Pressure taps were located at several locations within the perspex model and both the local and average heat transfer coefficients and pressure loss coefficients were determined. The measured and predicted results show, that for all cases investigated, the local internal heat transfer coefficient, which is driven by the highly three dimensional passage flows, is highly non-uniformly within the passage. The highest overall average heat transfer was obtained for the angled and tapered turbulator. Although the average heat transfer coefficient of the discrete broken turbulator and the small chevron turbulator were slightly lower than the baseline case, they had much higher pressure losses. In terms of the overall non-dimensional performance index, which incorporates both the heat transfer and the pressure drop, it was found that the angled and tapered turbulator gave the best overall performance.


Author(s):  
Akhilesh P. Rallabandi ◽  
Yao-Hsien Liu ◽  
Je-Chin Han

The heat transfer characteristics of a rotating pin-fin roughened wedge shaped channel have been studied. The model incorporates ejection through slots machined on the narrower end of the wedge, simulating a rotor blade trailing edge. The copperplate regional average method is used to determine the heat transfer coefficient; pressure taps have been used to estimate the flow discharged through each slot. Tests have been conducted at high rotation (≈ 1 ) and buoyancy (≈ 2) numbers, in a pressurized rotating rig. Reynolds Numbers investigated range from 10,000 to 40,000 and rotational speeds range from 0–400rpm. Pin-fins studied are made of copper as well as non-conducting garolite. Results show high heat transfer coefficients in the proximity of the slot. A significant enhancement in heat transfer due to the pin-fins, compared with a smooth channel is observed. Even the non-conducting pin-fins, indicative of heat transfer on the end-wall show a significant enhancement in the heat transfer coefficient. Results also show a strong rotation effect, increasing significantly the heat transfer coefficient on the trailing surface — and reducing the heat transfer on the leading surface.


1992 ◽  
Vol 114 (4) ◽  
pp. 887-892 ◽  
Author(s):  
G. F. Jones ◽  
F. C. Prenger

Heat transfer in a fluid-to-fluid screen heat exchanger is analyzed from first principles. The screens are treated as an ensemble of pin fins and an empirical heat transfer coefficient accounts for convection heat transfer at the fin surface. Pressure drop and simultaneous axial conduction in the screen matrix and the wall separating the fluid streams are modeled. Expressions are obtained that relate dimensionless length ratios to exchanger effectiveness and pressure drop. The “mesh ratio,” defined as the ratio of fin diameter (d) to spacing (s), prevails throughout the results. The key findings are: (1) the existence of an optimal ratio of fin length (a) to fin diameter that maximizes thermal performance (arising from the competition between the fin-length dependent heat transfer coefficient and fin surface area), (2) increasing a/d greater than optimal increases exchanger length and reduces pressure drop; for a/d less than optimal heat transfer is depressed and pressure drop increased, and (3) the pressure drop is linear with overall Ntu and varies as d−2, (1 + d/s)6, and approximately the square of the mass flow rate per width of exchanger. An exact solution for axial conduction is presented that is valid in the limit of large Ntu and equal fluid capacity rates. Axial conduction is seen to decrease with increasing Ntu and mass flow rates and reduced fin a/d ratio. Predictions from the model are validated by comparing with published effectiveness and pressure-drop data.


2019 ◽  
Vol 8 (4) ◽  
pp. 7163-7166

The present work deals with heat transfer augmentation in a Hair-Pin heat exchanger using magnetite/water nanofluid at volume concentrations of 0.004%, 0.006% and 0.008% under turbulent flow, the effect of different concentration of magnetite nanoparticles are added in pure water as basefluid on heat transfer coefficient and pressure drop in a hair-pin heat exchanger for counteract flow arrangement are investigated. The magnetite/water nanofluid is flowing through the inner tube and Reynolds number considered is in the range of 16000 to 30000. The results showed that there is 25-33% enhancement in heat transfer coefficient at 0.008% to the water at Reynolds number range of 16000 to 30000.


2018 ◽  
Vol 14 (2) ◽  
pp. 104-112 ◽  
Author(s):  
Mohammad Hemmat Esfe ◽  
Somchai Wongwises ◽  
Saeed Esfandeh ◽  
Ali Alirezaie

Background: Because of nanofluids applications in improvement of heat transfer rate in heating and cooling systems, many researchers have conducted various experiments to investigate nanofluid's characteristics more accurate. Thermal conductivity, electrical conductivity, and heat transfer are examples of these characteristics. Method: This paper presents a modeling and validation method of heat transfer coefficient and pressure drop of functionalized aqueous COOH MWCNT nanofluids by artificial neural network and proposing a new correlation. In the current experiment, the ANN input data has included the volume fraction and the Reynolds number and heat transfer coefficient and pressure drop considered as ANN outputs. Results: Comparing modeling results with proposed correlation proves that the empirical correlation is not able to accurately predict the experimental output results, and this is performed with a lot more accuracy by the neural network. The regression coefficient of neural network outputs was equal to 99.94% and 99.84%, respectively, for the data of relative heat transfer coefficient and relative pressure drop. The regression coefficient for the provided equation was also equal to 97.02% and 77.90%, respectively, for these two parameters, which indicates this equation operates much less precisely than the neural network. Conclusion: So, relative heat transfer coefficient and pressure drop of nanofluids can also be modeled and estimated by the neural network, in addition to the modeling of nanofluid’s thermal conductivity and viscosity executed by different scholars via neural networks.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Swanand Gaikwad ◽  
Ashish Parmar

AbstractHeat exchangers possess a significant role in energy transmission and energy generation in most industries. In this work, a three-dimensional simulation has been carried out of a shell and tube heat exchanger (STHX) consisting of segmental baffles. The investigation involves using the commercial code of ANSYS CFX, which incorporates the modeling, meshing, and usage of the Finite Element Method to yield numerical results. Much work is available in the literature regarding the effect of baffle cut and baffle spacing as two different entities, but some uncertainty pertains when we discuss the combination of these two parameters. This study aims to find an appropriate mix of baffle cut and baffle spacing for the efficient functioning of a shell and tube heat exchanger. Two parameters are tested: the baffle cuts at 30, 35, 40% of the shell-inside diameter, and the baffle spacing’s to fit 6,8,10 baffles within the heat exchanger. The numerical results showed the role of the studied parameters on the shell side heat transfer coefficient and the pressure drop in the shell and tube heat exchanger. The investigation shows an increase in the shell side heat transfer coefficient of 13.13% when going from 6 to 8 baffle configuration and a 23.10% acclivity for the change of six baffles to 10, for a specific baffle cut. Evidence also shows a rise in the pressure drop with an increase in the baffle spacing from the ranges of 44–46.79%, which can be controlled by managing the baffle cut provided.


2000 ◽  
Vol 122 (4) ◽  
pp. 792-800 ◽  
Author(s):  
P. S. Wei ◽  
F. B. Yeh

The heat transfer coefficient at the bottom surface of a splat rapidly solidified on a cold substrate is self-consistently and quantitatively investigated. Provided that the boundary condition at the bottom surface of the splat is specified by introducing the obtained heat transfer coefficient, solutions of the splat can be conveniently obtained without solving the substrate. In this work, the solidification front in the splat is governed by nonequilibrium kinetics while the melting front in the substrate undergoes equilibrium phase change. By solving one-dimensional unsteady heat conduction equations and accounting for distinct properties between phases and splat and substrate, the results show that the time-dependent heat transfer coefficient or Biot number can be divided into five regimes: liquid splat-solid substrate, liquid splat-liquid substrate, nucleation of splat, solid splat-solid substrate, and solid splat-liquid substrate. The Biot number at the bottom surface of the splat during liquid splat cooling increases and nucleation time decreases with increasing contact Biot number, density ratio, and solid conductivity of the substrate, and decreasing specific heat ratio. Decreases in melting temperature and liquid conductivity of the substrate and increase in latent heat ratio further decrease the Biot number at the bottom surface of the splat after the substrate becomes molten. Time-dependent Biot number at the bottom surface of the splat is obtained from a scale analysis. [S0022-1481(00)01004-5]


2013 ◽  
Vol 832 ◽  
pp. 160-165 ◽  
Author(s):  
Mohammad Alam Khairul ◽  
Rahman Saidur ◽  
Altab Hossain ◽  
Mohammad Abdul Alim ◽  
Islam Mohammed Mahbubul

Helically coiled heat exchangers are globally used in various industrial applications for their high heat transfer performance and compact size. Nanofluids can provide excellent thermal performance of this type of heat exchangers. In the present study, the effect of different nanofluids on the heat transfer performance in a helically coiled heat exchanger is examined. Four different types of nanofluids CuO/water, Al2O3/water, SiO2/water, and ZnO/water with volume fractions 1 vol.% to 4 vol.% was used throughout this analysis and volume flow rate was remained constant at 3 LPM. Results show that the heat transfer coefficient is high for higher particle volume concentration of CuO/water, Al2O3/water and ZnO/water nanofluids, while the values of the friction factor and pressure drop significantly increase with the increase of nanoparticle volume concentration. On the contrary, low heat transfer coefficient was found in higher concentration of SiO2/water nanofluids. The highest enhancement of heat transfer coefficient and lowest friction factor occurred for CuO/water nanofluids among the four nanofluids. However, highest friction factor and lowest heat transfer coefficient were found for SiO2/water nanofluids. The results reveal that, CuO/water nanofluids indicate significant heat transfer performance for helically coiled heat exchanger systems though this nanofluids exhibits higher pressure drop.


Sign in / Sign up

Export Citation Format

Share Document