Study of Flame Transfer Function With Three Dimensional Calculations

Author(s):  
M. Zhu ◽  
A. P. Dowling ◽  
K. N. C. Bray

Combustors with fuel-spray atomisers are particularly susceptible to a low-frequency oscillation at idle and sub-idle conditions. For aero-engine combustors, the frequency of this oscillation is typically in the range 70–120Hz and is commonly called ‘rumble’. The mechanism involves interaction between the plenum around the burner and the combustion chamber. In our previous work, the CFD calculation has been conducted in an idealised 2D axisymmetric annular combustor to calculate unsteady combustion flow at idle conditions. In this work, in order to investigate the effects of asymmetrical geometry and flow distributions on the transfer functions of flame and shape factors, the CFD code has been extended to fully three-dimensional geometries. The results are compared with those from 2D calculations. Though the differences of the distribution local flow properties are evident, the integrated results for the 3D flow are broadly similar to those obtained in 2D. One substantial difference arises due to the more accurate modelling of the downstream contraction near the combustor exit, which is treated as a smooth contraction in our 3D calculations and as an abrupt change in the simplified 2D geometry. The gradual downstream contraction not only accelerates the fluid near the combustor exit but also unifies the flow properties. As the consequence, we can see that, near the exit, the phase of the flame transfer function increases rapidly, and the shape factors tend toward unity. This work is a further development of our systematic investigation into the ‘rumble’ phenomenon, and gives encouragement that much of the essential physics can be captured in a quasi-one-dimensional model.

Author(s):  
Priscila F. B. Sousa ◽  
Ana P. Fernandes ◽  
Vale´rio Luiz Borges ◽  
George S. Dulikravich ◽  
Gilmar Guimara˜es

This work presents a modified procedure to use the concept of dynamic observers based on Green’s functions to solve inverse problems. The original method can be divided in two distinct steps: i) obtaining a transfer function model GH and; ii) obtaining heat transfer functions GQ and GN and building an identification algorithm. The transfer function model, GH, is obtained from the equivalent dynamic systems theory using Green’s functions. The modification presented here proposes two different improvements in the original technique: i) A different method of obtaining the transfer function model, GH, using analytical functions instead of numerical procedures, and ii) Definition of a new concept of GH to allow the use of more than one response temperature. Obtaining the heat transfer functions represents an important role in the observer method and is crucial to allow the technique to be directly applied to two or three-dimensional heat conduction problems. The idea of defining the new GH function is to improve the robustness and stability of the algorithm. A new dynamic equivalent system for the thermal model is then defined in order to allow the use of two or more temperature measurements. Heat transfer function, GH can be obtained numerically or analytically using Green’s function method. The great advantage of deriving GH analytically is to simplify the procedure and minimize the estimative errors.


Author(s):  
Carol A. Armitage ◽  
Alex J. Riley ◽  
R. Stewart Cant ◽  
Ann P. Dowling ◽  
Simon R. Stow

Combustion oscillations that arise in gas turbines can lead to plant damage. One method used to predict these oscillations is to analyse the acoustics using a simple linear model. This model requires a transfer function to describe the response of the heat release to flow perturbations. A transfer function has been obtained for a swirled premixed combustion system using experiments under atmospheric conditions and CFD. These results have been compared with analytical models. The experimental and computational transfer functions both indicate a low frequency zero. A time-delay spread model gives a good representation of the computational transfer function. The experimental transfer function is described well by a model that combines a time-delay spread with a constant gain.


Author(s):  
Jan Kopitz ◽  
Andreas Huber ◽  
Thomas Sattelmayer ◽  
Wolfgang Polifke

A low order acoustic network model is used to examine the stability of an annular combustor for different operating points. The results obtained by this approach are compared against experimental data from a full annular combustor. This annular combustor, in contrast to commonly used single burners or sector rigs, was used to include also 2-dimensional effects like the influence of circumferential modes, which can occur in practical gas turbine applications. The influence of the flame enters the network model simulation through an experimentally measured flame transfer function in terms of the response of heat release to acoustic velocity fluctuations. This flame transfer function, which has been measured at a stable operating point, is then used as a basis for the determination of flame transfer functions at other operating points by means of scaling methods. The transition to instability is thereby simulated by determination of the complex eigen modes, applying methods from control theory. The analytically determined stability behavior is compared to the experimentally measured one, with the aim to enhance and validate the network model approach as a means of predicting combustion instabilities in early design stages.


2008 ◽  
Vol 294 (1) ◽  
pp. H362-H371 ◽  
Author(s):  
Xiaoxiao Chen ◽  
Ramakrishna Mukkamala

Heart rate (HR) power spectral indexes are limited as measures of the cardiac autonomic nervous systems (CANS) in that they neither offer an effective marker of the β-sympathetic nervous system (SNS) due to its overlap with the parasympathetic nervous system (PNS) in the low-frequency (LF) band nor afford specific measures of the CANS due to input contributions to HR [e.g., arterial blood pressure (ABP) and instantaneous lung volume (ILV)]. We derived new PNS and SNS indexes by multisignal analysis of cardiorespiratory variability. The basic idea was to identify the autonomically mediated transfer functions relating fluctuations in ILV to HR (ILV→HR) and fluctuations in ABP to HR (ABP→HR) so as to eliminate the input contributions to HR and then separate each estimated transfer function in the time domain into PNS and SNS indexes using physiological knowledge. We evaluated these indexes with respect to selective pharmacological autonomic nervous blockade in 14 humans. Our results showed that the PNS index derived from the ABP→HR transfer function was correctly decreased after vagal and double (vagal + β-sympathetic) blockade ( P < 0.01) and did not change after β-sympathetic blockade, whereas the SNS index derived from the same transfer function was correctly reduced after β-sympathetic blockade in the standing posture and double blockade ( P < 0.05) and remained the same after vagal blockade. However, this SNS index did not significantly decrease after β-sympathetic blockade in the supine posture. Overall, these predictions were better than those provided by the traditional high-frequency (HF) power, LF-to-HF ratio, and normalized LF power of HR variability.


1993 ◽  
Vol 115 (2) ◽  
pp. 193-204 ◽  
Author(s):  
I. N. Tansel

A new approach is introduced to model 3-D turning operations that are used for the stability analysis of long slender bars. This approach utilizes the unique relationship between externally created feed direction tool displacements (input) and the resultant thrust direction workpiece vibrations (output) to estimate stability limits in three-dimensional turning operations from the data of a single dynamic cutting test. In this paper, this unique relationship is referred to as the “Unified Transfer Function ” (UTF) and its expressions are derived from conventional cutting and structural dynamics transfer functions. For the stability analysis, the uncut chip area variations of oblique cutting are represented by a linear model having different coefficients at different depths of cuts. These coefficients are found by using a tool geometry simulation program. An iterative procedure is developed for the stability analysis. The proposed approach considers in-process structural and cutting dynamics and can be automatically implemented without any input from the operator for the traverse turning of a long slender bar. Experimental studies have validated the proposed modeling and stability analysis techniques. The UTFs can also be used to monitor machine tool structure, tool wear, and the machinability of the material.


Author(s):  
J. Jeffrey Moore ◽  
Giuseppe Vannini ◽  
Massimo Camatti ◽  
Paolo Bianchi

A rotordynamic analysis of a large turbo-compressor that models both the casing and supports along with the rotor-bearing system was performed. A three-dimensional (3-D) finite element model of the casing captures the intricate details of the casing and support structure. Two approaches are presented, including development of transfer functions of the casing and foundation, as well as a fully coupled rotor-casing-foundation model. The effect of bearing support compliance is captured, as well as the influence of casing modes on the rotor response. The first approach generates frequency response functions (FRF’s) from the finite element case model at the bearing support locations. A high-order polynomial in numerator-denominator transfer function format is generated from a curve-fit of the FRF. These transfer functions are then incorporated into the rotordynamics model. The second approach is a fully coupled rotor and casing model that is solved together. An unbalance response calculation is performed in both cases to predict the resulting rotor critical speeds and response of the casing modes. The effect of the compressor case and supports caused the second critical speed to drop to a value close to the operating speed and not compliant with API 617 7th edition requirements. A combination of rotor, journal bearing, casing, and support modifications resulted in a satisfactory and API compliant solution. The results of the fully coupled model validated the transfer function approach.


Author(s):  
Klaas Kunze ◽  
Christoph Hirsch ◽  
Thomas Sattelmayer

A generic swirl stabilized premix burner for natural gas is experimentally investigated in both a single burner test rig and in an annular combustion chamber. Flame transfer functions are measured relating the fluctuation of the flame heat release to the axial velocity fluctuation at the burner outlet. The OH-chemiluminescence signal of the flame, captured with a photomultiplier tube, is taken as an estimate for flame heat release, whereas the velocity fluctuation is measured with a hot wire probe. As integral measurements of the entire flame reveal important differences between the single burner and the annular combustor, locally resolved measurements are performed observing slices of the flame that are perpendicular to the main flow direction at a variable distance from the burner outlet. In both the single and the annular combustor a near field and a far field of the dynamic flame behavior can be distinguished. The annular combustor flame has a larger near field than the single combustor flame and a different shape in the presence of circumferential acoustic waves. Variation of swirl, thermal power and mass flow and comparison of the steady state heat release distribution within the flames lead to the result that the effective swirl in the annular combustor is lower than for the identical burner in the single burner combustor. When the difference in swirl is compensated for by modifying the burner configuration in the annular combustion chamber the flame transfer function is still not equal to the single combustor flame. The remaining difference can be attributed to the circumferential acoustic waves in the annular combustor which influence the flame shape.


2019 ◽  
Vol 872 ◽  
pp. 348-366 ◽  
Author(s):  
Yang Yang ◽  
Mingshui Li ◽  
Haili Liao

This paper investigates the influence of three-dimensional effects on the transfer function of a rectangular-section body in turbulent flow. The dimensionless factor $\unicode[STIX]{x1D713}$, as derived by Li et al. (J. Fluid Mech., vol. 847, 2018, pp. 768–785), is adapted to evaluate this influence. The calculation of $\unicode[STIX]{x1D713}$ requires the spanwise influence term. For this purpose, an adapted form of the lift coherence function is derived, enabling the use of the measured lift coherence for the estimation of the spanwise influence term. Three rectangular models with different cross-sections (chord-to-depth ratios of 3, 5 and 10) are chosen for testing, and a NACA 0015 airfoil model is tested for comparison. Using the measured spanwise influence terms, the dimensionless factors of these models are then numerically calculated under different ratios of the turbulent integral scale to the chord $\unicode[STIX]{x1D6FE}$ and aspect ratios $\unicode[STIX]{x1D703}$. It is shown that the dimensionless factors of the rectangular models increase as $\unicode[STIX]{x1D6FE}$ and $\unicode[STIX]{x1D703}$ increase, which are similar to the dimensionless factor of the airfoil model. If $\unicode[STIX]{x1D6FE}$ and $\unicode[STIX]{x1D703}$ have suitable values, the strip theory could be applicable to the rectangular-section body. It is also found that the dimensionless factors of all the rectangular models are larger than the dimensionless factor of the airfoil model under the same parameters. The smaller the chord-to-depth ratio is, the larger the dimensionless factor is. Using the strip theory to calculate the lift response of the rectangular-section body may provide more accurate estimation. Additionally, the one-wavenumber transfer functions of these models are determined under the consideration of the three-dimensional effects. The results show that the experimental transfer functions of the rectangular models cannot be captured by the Sears function. They are larger than the Sears function at lower frequencies, while falling at a faster rate as the frequency increases. For bluff bodies with separated flow, the modified transfer function presented here appears to be an appropriate approach.


Author(s):  
Clément Mirat ◽  
Daniel Durox ◽  
Thierry Schuller

Characterizations of the response of swirling spray flames to flow rate modulations over the entire frequency range remain scarce. This response is addressed here by determining the transfer function of spray flames stabilized on a multi-jet steam-assisted dodecane injector in a turbulent swirling flow confined by a quartz tube. This type of burner is used in some liquid fueled industrial boilers. In the absence of combustion and air flow, a phase Doppler particle analyzer is used to determine the Sauter mean diameter (SMD) of the fuel spray as a function of the atomizing gas to fuel mass flow rate ratio (GLR) injected in the nozzle. For small values of the GLR, the SMD of the generated spray decreases rapidly as the GLR increases. For GLR values above a certain threshold, the SMD reaches a constant value that is independent of the GLR. Transfer functions are measured in this second regime for swirling air flows characterized by a swirl number S = 0.92 that is determined by laser Doppler anemometry. Transfer functions defined as the normalized ratio of OH* or CH* flame chemiluminescence intensity fluctuations divided by the velocity oscillation level measured by laser Doppler velocimetry at the burner outlet are determined as a function of the forcing frequency for a small perturbation level. The response of sooty and non sooty flames at globally lean conditions are examined. Using a set of steady experiments, it is shown that the OH* signal may safely be used to confidently estimate low frequency heat release rate disturbances for both types of flames, but the CH* signal cannot be used in the sooty flame cases. The measured transfer functions of non-sooty spray flames feature many similarities with the transfer function of perfectly premixed swirling flames indicating that their dynamics is also controlled by interference mechanisms that need to be elucidated.


Sign in / Sign up

Export Citation Format

Share Document