Blade Forced Response Prediction for Industrial Gas Turbines: Part 1 — Methodologies

Author(s):  
Stuart Moffatt ◽  
Li He

Forming the first part of a two-part paper, the methodology of an efficient frequency-domain approach for predicting the forced response of turbomachinery blades is presented. The capability and computational efficiency of the method are demonstrated in Part Two with a three-stage transonic compressor case. Interaction between fluid and structure is dealt with in a loosely coupled manner, based on the assumption of linear aerodynamic damping and negligible frequency shift. The Finite Element (FE) package ANSYS is used to provide the mode shape and natural frequency of a particular mode, which is interpolated onto the CFD mesh. The linearised unsteady Navier-Stokes equations are solved in the frequency domain using a single-passage approach to provide aerodynamic excitation and damping forces. Two methods of obtaining the single degree-of-freedom forced response solution are demonstrated: the Modal Reduction Technique, solving the modal forced response equation in modal space; and a new Energy Method, an alternative method allowing calculations to be performed directly and simply in physical space. Both methods are demonstrated in a preliminary case study of the NASA R67 transonic fan blade with excitation of the 1st torsion mode due to a hypothetical inlet distortion.

2005 ◽  
Vol 21 (4) ◽  
pp. 707-714 ◽  
Author(s):  
Stuart Moffatt ◽  
Wei Ning ◽  
Yansheng Li ◽  
Roger G. Wells ◽  
Li He

Author(s):  
Florian Fruth ◽  
Damian M. Vogt ◽  
Ronnie Bladh ◽  
Torsten H. Fransson

A numerical investigation on the impact of clocking on the efficiency and the aerodynamic forcing of the first 1.5 stages of an industrial transonic compressor was conducted. Using unsteady 3D Navier-Stokes equations, seven clocking positions were calculated and analyzed. Efficiency changes due to clocking were up to 0.125%, whereas modal excitation changes up to 31.7%. However, no direct correlation between the parameters of efficiency, stimulus and modal excitation was found as reported by others. It was found that potential forced response risks can be reduced by clocking, resulting only in minor efficiency penalties. Assuming almost sinusoidal behavior of efficiency and stimulus changes, as found in this investigation, both parameters can be set into correlation by using an ellipse interpolation. Direct impact of design changes on efficiency and stimulus through clocking can be deducted from that graph and quick estimations about extrema be made using only 5–6 transient simulations. Results however also stress the importance of considering modal excitation when optimizing for aerodynamic forcing, for which the ellipse interpolation is not necessarily possible. Highest efficiency is achieved with the IGV wake impinging on the stator blade leading edge at mid-span. It was found however that this alone is not a sufficient criteria in case of inclined wakes, as wake impingement at different span positions leads to different efficiencies.


Author(s):  
A I Sayma ◽  
M Vahdati ◽  
M Imregun

The forced response due to flow defects caused by the upstream blade rows is predicted for two turbines: intermediate pressure (IP) and low pressure (LP). The prediction method is based on an advanced numerical tool where the compressible viscous flow field is modelled by solving Favre-averaged Navier-Stokes equations with the Baldwin and Barth turbulence model. The flow solution is coupled to a modal model of the structure and information is exchanged every time step between the fluid and the structural domains. The hybrid unstructured mesh is moved at each time step to follow the structural motion using a spring analogy. For the IP turbine, the method was used to rank two different designs of nozzle guide vanes. For the LP turbine, special emphasis was placed on predicting vibration amplitudes due to high and low engine order excitations. Predictions and measurements were found to be in good agreement for both turbines. Due to insufficient experimental data, it was difficult to assess the accuracy of the low engine order computations, although it was shown that the model was capable of undertaking such a task.


Author(s):  
Wei Ning ◽  
Stuart Moffatt ◽  
Yansheng Li ◽  
Roger G. Wells

This is part two of a two-part paper. Part One describes the methodologies of a blade forced response prediction system. The emphasis of this part is to demonstrate the capability and computational efficiency of the system for predicting blade forced response. Part two firstly presents verification of the multistage time-linearized unsteady flow solver through comparison of predicted blade surface pressure distributions with data measured on a VKI transonic turbine stage. It concludes with presentation of the results of an analysis carried out on the last stage rotor blade of an ALSTOM three-stage transonic test compressor. In the analysis, strain gauge results together with Finite Element (FE) modal analysis identify the resonant crossings. The mode shape of the blade vibration is used in the CFD code to predict the blade aerodynamic damping. The aerodynamic damping is compared with the blade system damping obtained from the strain gauge tests. The variation is shown of aerodynamic and mechanical damping with blade mode shape. The blade unsteady modal forces induced by the upstream stators are derived from the calculated unsteady flows. The blade vibration at three resonant crossings is compared with those given by strain gauge measurements. Good comparisons and high computational efficiency demonstrate that the forced response methodologies described in Part One can be used in the blade design process to tackle blade aeromechanical issues.


Author(s):  
M. Vahdati ◽  
C. Breard ◽  
G. Simpson ◽  
M. Imregun

This paper will focus on core-compressor forced response with the aim to develop two design criteria, the so-called chordwise cumulative modal force and heightwise cumulative force, to assess the potential severity of the vibration levels from the correlation between the unsteady pressure distribution on the blade’s surface and the structural modeshape. It is also possible to rank various blade designs since the proposed criterion is sensitive to changes in both unsteady aerodynamic loads and the vibration modeshapes. The proposed methodology was applied to a typical core-compressor forced response case for which measured data were available. The Reynolds-averaged Navier-Stokes equations were used to represent the flow in a non-linear time-accurate fashion on unstructured meshes of mixed elements. The structural model was based on a standard finite element representation from which the vibration modes were extracted. The blade flexibility was included in the model by coupling the finite element model to the unsteady flow model in a time-accurate fashion. A series of numerical experiments were conducted by altering the stator wake and using the proposed indicator functions to minimize the rotor response levels. It was shown that a fourfold response reduction was possible for a certain mode with only a minor modification of the blade.


2014 ◽  
Vol 137 (3) ◽  
Author(s):  
Niklas Neupert ◽  
Birger Ober ◽  
Franz Joos

In recent years, overspray fogging has become a powerful means for power augmentation of industrial gas turbines (GT). Most of the studies concerning this topic focus on the problem from a thermodynamic point of view. Only a few studies, however, were undertaken to investigate the droplet behavior in the flow channel of a compressor. In this paper, results of experimental investigation of a water laden flow through a transonic compressor cascade are presented. A finely dispersed spray was used in the measurements (D10 < 10 μm). Results of the droplet behavior are shown in terms of shadowgraphy images and images of the blade surface film pattern. The angle of attack, the incoming velocity, and the water load were varied. The qualitative observations are related to laser Doppler and phase Doppler anemometer (LDA/PDA) data taken in the flow channel and at the outlet of the cascade. The data represent a base for numerical and mean line models of two-phase compressor flow.


2021 ◽  
pp. 1-20
Author(s):  
David J Rondon ◽  
Gudeta Berhanu Benti ◽  
Jan-Olov Aidanpää ◽  
Rolf Gustavsson

Abstract It has been documented that stiffness and damping for a four-pad bearing are dependent not only the magnitude of the load but also on the position of the rotor in the bearing. However, 8-pad bearings are not commonly employed on horizontal turbines, and the presence of several pads in the bearing will decisively affect the dynamics of the system. This paper evaluates the stiffness and damping coefficients of tilting-pad bearings with eight pads and explore the main frequencies acting on the forced response of a vertical rotor. The bearing properties were modeled as a function of eccentricity and position in the stationary coordinate system by Navier-Stokes equations whose results are taken from commercial software. The simulated unbalanced response is compared to experimental results; the changing position of the shaft produces a periodic stiffness and damping, which is dependent on the number of pads. Cross-coupled coefficients influence is discussed, showing that their absence makes an accurate model for the mean values. The results indicate that simulation of vertical rotors with 8-pad bearings can be simplified which allow more effective simulations and dynamic analysis.


2020 ◽  
Vol 40 (1) ◽  
pp. 59-66
Author(s):  
Abderrahmane Chachoua ◽  
Mohamed Kamal Hamidou ◽  
Mohammed Hamel

The design for better performance of the spiral housing volute used commonly in radial and mixed inflow gas turbines is of prime importance as it affects the machine stage at both design and off design conditions. The tongue of the scroll divides the flow into two streams, and represents a severe source of disturbances, in terms of thermodynamic parameter uniformity, maximum kinetic energy, the right angle of attack to the rotor and minimum losses. Besides, the volute suffers an undesirable effect due to the recirculating mass flow rate in near bottom vicinity of the tongue. The present project is an attempt to design a tongue fitted with cylindrical holes traversing normal to the stream wise direction, where on account of the large pressure difference between the top and the bottom sides of the tongue will force the recirculating flow to go through the rotor inlet. This possibility with its limitations has not yet been explored. A numerical simulation is performed which might provide our suitable objectives. To achieve this goal the ANSYS code is used to build the geometry, generate the mesh, and to simulate the flow by solving numerically the averaged Navier Stokes equations. Apparently, the numerical results show evidence of favorable impact in using porous tongue. The realization of a contact between the main and recirculation flow by drilled holes on the tongue surface leads to a flow field uniformity, a reduction in the magnitude of the loss coefficient, and a 20 % reduction in the recirculating mass flow rate.


2019 ◽  
Vol 141 (9) ◽  
Author(s):  
Niklas Neupert ◽  
Janneck Christoph Harbeck ◽  
Franz Joos

In recent years, overspray fogging has become a powerful means for power augmentation of industrial gas turbines. Despite the positive thermodynamic effect on the cycle, droplets entering the compressor increase the risk of water droplet erosion and deposition of water on the blades leading to an increase of required torque and profile loss. Due to this, detailed information about the structure and the amount of water on the surface is key for compressor performance. Experiments were conducted with a droplet laden flow in a transonic compressor cascade focusing on the film formed by the deposited water. Two approaches were taken. In the first approach, the film thickness on the blade was directly measured using white light interferometry. Due to significant distortion of the flow caused by the measurement system, a transfer of the measured film thickness to the undisturbed case is not possible. Therefore, a film model is adapted to describe the film flow in terms of height averaged film parameters. In the second approach, experiments were conducted in an undisturbed cascade setup and the water film pattern was measured using a nonintrusive quantitative image processing tool. Utilizing the measured flow pattern in combination with findings from the literature, the rivulet flow structure is resolved. From continuity of the water flow, a film thickness is derived showing good agreement with the previously calculated results. Using both approaches, a three-dimensional (3D) reconstruction of the water film pattern is created giving first experimental results of the film forming on stationary compressor blades under overspray fogging conditions.


Sign in / Sign up

Export Citation Format

Share Document