Active On-Line Protective Tuning Adjustment Technique to Achieve Better Availability and Performance in Pre-Mix DLN Combustion

Author(s):  
C. Koeneke ◽  
M. Nomura ◽  
H. Iba ◽  
T. Kawakami ◽  
T. Koga

Stable combustion of gas turbines is essential to ensure reliability, availability and achieve maximum component life capability. Combustor instabilities can trigger high-pressure fluctuations that are generally due to sudden changes in fuel calorific value or fuel quality, large ambient temperature swings, or sudden changes in operating load conditions. In order to protect against combustor instabilities, Mitsubishi developed an advanced monitoring and protection system known as the Advanced Combustor Pressure Fluctuation Monitoring (advanced CPFM) system. This on-line monitoring and protection system automatically tunes the air bypass valve, main and pilot fuel flows to maintain appropriate fuel/air ratio depending on the combustion chamber flame instability condition. The response to such actions successfully prevents flame out occurrence, combustion oscillation, and flame flash back under various modes while trying to maintain emissions within specified levels. This paper describes the operation and functionalities of the advanced CPFM system that has been tested at Mitsubishi’s in-house combined cycle power plant under real operating conditions.

2002 ◽  
Vol 124 (4) ◽  
pp. 910-921 ◽  
Author(s):  
S. C. Gu¨len ◽  
P. R. Griffin ◽  
S. Paolucci

This paper describes the results of real-time, on-line performance monitoring of two gas turbines over a period of five months in 1997. A commercially available software system is installed to monitor, analyze and store measurements obtained from the plant’s distributed control system. The software is installed in a combined-cycle, cogeneration power plant, located in Massachusetts, USA, with two Frame 7EA gas turbines in Apr. 1997. Vendor’s information such as correction and part load performance curves are utilized to calculate expected engine performance and compare it with measurements. In addition to monitoring the general condition and performance of the gas turbines, user-specified financial data is used to determine schedules for compressor washing and inlet filter replacement by balancing the associated costs with lost revenue. All measurements and calculated information are stored in databases for real-time and historical trending and tabulating. The data is analyzed ex post facto to identify salient performance and maintenance issues.


Author(s):  
S. Can Gülen ◽  
Patrick R. Griffin ◽  
Sal Paolucci

This paper describes the results of real-time, on-line performance monitoring of two gas turbines over a period of five months in 1997. A commercially available software system is installed to monitor, analyze and store measurements obtained from the plant’s distributed control system. The software is installed in a combined-cycle, cogeneration power plant, located in Mass., USA, with two Frame 7EA gas turbines in April 1997. Vendor’s information such as correction and part load performance curves are utilized to calculate expected engine performance and compare it with measurements. In addition to monitoring the general condition and performance of the gas turbines, user-specified financial data is used to determine schedules for compressor washing and inlet filter replacement by balancing the associated costs with lost revenue. All measurements and calculated information are stored in databases for real-time and historical trending and tabulating. The data is analyzed ex post facto to identify salient performance and maintenance issues.


Author(s):  
Xiaomo Jiang ◽  
Craig Foster

Gas turbine simple or combined cycle plants are built and operated with higher availability, reliability, and performance in order to provide the customer with sufficient operating revenues and reduced fuel costs meanwhile enhancing customer dispatch competitiveness. A tremendous amount of operational data is usually collected from the everyday operation of a power plant. It has become an increasingly important but challenging issue about how to turn this data into knowledge and further solutions via developing advanced state-of-the-art analytics. This paper presents an integrated system and methodology to pursue this purpose by automating multi-level, multi-paradigm, multi-facet performance monitoring and anomaly detection for heavy duty gas turbines. The system provides an intelligent platform to drive site-specific performance improvements, mitigate outage risk, rationalize operational pattern, and enhance maintenance schedule and service offerings via taking appropriate proactive actions. In addition, the paper also presents the components in the system, including data sensing, hardware, and operational anomaly detection, expertise proactive act of company, site specific degradation assessment, and water wash effectiveness monitoring and analytics. As demonstrated in two examples, this remote performance monitoring aims to improve equipment efficiency by converting data into knowledge and solutions in order to drive value for customers including lowering operating fuel cost and increasing customer power sales and life cycle value.


2021 ◽  
Author(s):  
Silvia Ravelli

Abstract This study takes inspiration from a previous work focused on the simulations of the Willem-Alexander Centrale (WAC) power plant located in Buggenum (the Netherlands), based on integrated gasification combined cycle (IGCC) technology, under both design and off-design conditions. These latter included co-gasification of coal and biomass, in proportions of 30:70, in three different fuel mixtures. Any drop in the energy content of the coal/biomass blend, with respect to 100% coal, translated into a reduction in gas turbine (GT) firing temperature and load, according to the guidelines of WAC testing. Since the model was found to be accurate in comparison with operational data, here attention is drawn to the GT behavior. Hence part load strategies, such as fuel-only turbine inlet temperature (TIT) control and inlet guide vane (IGV) control, were investigated with the aim of maximizing the net electric efficiency (ηel) of the whole plant. This was done for different GT models from leading manufactures on a comparable size, in the range between 190–200 MW. The influence of fuel quality on overall ηel was discussed for three binary blends, over a wide range of lower heating value (LHV), while ensuring a concentration of H2 in the syngas below the limit of 30 vol%. IGV control was found to deliver the highest IGCC ηel combined with the lowest CO2 emission intensity, when compared not only to TIT control but also to turbine exhaust temperature control, which matches the spec for the selected GT engine. Thermoflex® was used to compute mass and energy balances in a steady environment thus neglecting dynamic aspects.


Author(s):  
R. Friso ◽  
N. Casari ◽  
M. Pinelli ◽  
A. Suman ◽  
F. Montomoli

Abstract Gas turbines (GT) are often forced to operate in harsh environmental conditions. Therefore, the presence of particles in their flow-path is expected. With this regard, deposition is a problem that severely affects gas turbine operation. Components’ lifetime and performance can dramatically vary as a consequence of this phenomenon. Unfortunately, the operating conditions of the machine can vary in a wide range, and they cannot be treated as deterministic. Their stochastic variations greatly affect the forecasting of life and performance of the components. In this work, the main parameters considered affected by the uncertainty are the circumferential hot core location and the turbulence level at the inlet of the domain. A stochastic analysis is used to predict the degradation of a high-pressure-turbine (HPT) nozzle due to particulate ingestion. The GT’s component analyzed as a reference is the HPT nozzle of the Energy-Efficient Engine (E3). The uncertainty quantification technique used is the probabilistic collocation method (PCM). This work shows the impact of the operating conditions uncertainties on the performance and lifetime reduction due to deposition. Sobol indices are used to identify the most important parameter and its contribution to life. The present analysis enables to build confidence intervals on the deposit profile and on the residual creep-life of the vane.


Author(s):  
Osama Ashour ◽  
Abdurrahman Khalidi ◽  
Ever Fadlun ◽  
Nicola Giannini ◽  
Marco Pieri ◽  
...  

Author(s):  
Ranga Nadig

Abstract Power plants operating in cyclic mode, standby mode or as back up to solar and wind generating assets are required to come on line on short notice. Simple cycle power plants employing gas turbines are being designed to come on line within 10–15 minutes. Combined cycle plants with heat recovery steam generators and steam turbines take longer to come on line. The components of a combined cycle plant, such as the HRSG, steam turbine, steam surface condenser, cooling tower, circulating water pumps and condensate pumps, are being designed to operate in unison and come on line expeditiously. Major components, such as the HRSG, steam turbine and associated steam piping, dictate how fast the combined cycle plant can come on line. The temperature ramp rates are the prime drivers that govern the startup time. Steam surface condenser and associated auxiliaries impact the startup time to a lesser extent. This paper discusses the design features that could be included in the steam surface condenser and associated auxiliaries to permit quick startup and reliable operation. Additional design features that could be implemented to withstand the demanding needs of cyclic operation are highlighted.


Author(s):  
Lothar Bachmann ◽  
W. Fred Koch

The purpose of this paper is to update the industry on the evolutionary steps that have been taken to address higher requirements imposed on the new generation combined cycle gas turbine exhaust ducting expansion joints, diverter and damper systems. Since the more challenging applications are in the larger systems, we shall concentrate on sizes from nine (9) square meters up to forty (40) square meters in ducting cross sections. (Reference: General Electric Frame 5 through Frame 9 sizes.) Severe problems encountered in gas turbine applications for the subject equipment are mostly traceable to stress buckling caused by differential expansion of components, improper insulation, unsuitable or incompatible mechanical design of features, components or materials, or poor workmanship. Conventional power plant expansion joints or dampers are designed for entirely different operating conditions and should not be applied in gas turbine applications. The sharp transients during gas turbine start-up as well as the very high temperature and high mass-flow operation conditions require specific designs for gas turbine application.


Author(s):  
Carlo Carcasci ◽  
Bruno Facchini ◽  
Stefano Gori ◽  
Luca Bozzi ◽  
Stefano Traverso

This paper reviews a modular-structured program ESMS (Energy System Modular Simulation) for the simulation of air-cooled gas turbines cycles, including the calculation of the secondary air system. The program has been tested for the Ansaldo Energia gas turbine V94.3A, which is one of the more advanced models in the family Vx4.3A with a rated power of 270 MW. V94.3A cooling system has been modeled with SASAC (Secondary Air System Ansaldo Code), the Ansaldo code used to predict the structure of the flow through the internal air system. The objective of the work was to investigate the tuning of the analytical program on the basis of the data from design and performance codes in use at Ansaldo Energy Gas Turbine Department. The results, both at base load over different ambient conditions and in critical off-design operating points (full-speed-no-load and minimum-load), have been compared with APC (Ansaldo Performance Code) and confirmed by field data. The coupled analysis of cycle and cooling network shows interesting evaluations for components life estimation and reliability during off-design operating conditions.


2014 ◽  
Vol 136 (10) ◽  
Author(s):  
Uyioghosa Igie ◽  
Pericles Pilidis ◽  
Dimitrios Fouflias ◽  
Kenneth Ramsden ◽  
Panagiotis Laskaridis

Industrial gas turbines are susceptible to compressor fouling, which is the deposition and accretion of airborne particles or contaminants on the compressor blades. This paper demonstrates the blade aerodynamic effects of fouling through experimental compressor cascade tests and the accompanied engine performance degradation using turbomatch, an in-house gas turbine performance software. Similarly, on-line compressor washing is implemented taking into account typical operating conditions comparable with industry high pressure washing. The fouling study shows the changes in the individual stage maps of the compressor in this condition, the impact of degradation during part-load, influence of control variables, and the identification of key parameters to ascertain fouling levels. Applying demineralized water for 10 min, with a liquid-to-air ratio of 0.2%, the aerodynamic performance of the blade is shown to improve, however most of the cleaning effect occurred in the first 5 min. The most effectively washed part of the blade was the pressure side, in which most of the particles deposited during the accelerated fouling. The simulation of fouled and washed engine conditions indicates 30% recovery of the lost power due to washing.


Sign in / Sign up

Export Citation Format

Share Document