Boundary Layer Suction via a Slot in a Transonic Compressor: Numerical Parameter Study and First Experiments

Author(s):  
K. Hubrich ◽  
A. Bo¨lcs ◽  
P. Ott

In the present paper a numerical and experimental study aiming at the enhancement of the working range of a transonic compressor via boundary layer suction (BLS) is presented. The main objective of the investigation is to study the influence of BLS on the interference between shock wave and boundary layer and to identify the possible benefit of BLS on the compressor working characteristics. An extensive numerical study has been carried out for the DATUM blade and for 2 different suction location configurations for one speed line and varying back-pressure levels, ranging from choked conditions to stall. It was found that the working range of the transonic compressor with a nominal inlet Mach number of 1.2 and a nominal pre-shock Mach number of 1.35 could be increased by sucking 2% of flow on the SS away, in such a way that the maximum pressure ratio and maximum diffusion could both be increased by 10%, when compared to the DATUM case. For smaller pressure ratios with respect to the design pressure ratio, the BLS is located in a supersonic flow region and thus creates additional losses due to a more divergent flow channel, which additionally accelerates the flow and results in a higher pre-shock Mach number creating higher losses. First measurements carried out in LTTs annular cascade, do show reasonable agreement with the computations in terms of inlet Mach number, flow angle, main shock location and stall limit. The most pronounced difference between measurements and computations is the occurrence of a terminal normal channel shock behind a bowed detached shock wave and a separation on the SS of the blade, which were both not predicted by the CFD.

Author(s):  
R. Fuchs ◽  
W. Steinert ◽  
H. Starken

A transonic compressor rotor cascade designed for an inlet Mach number of 1.09 and 14 degrees of flow turning has been redesigned for higher loading by an increased pitch-to-chord ratio. Test results, showing the influence of inlet Mach number and flow angle on cascade performance are presented and compared to data of the basic design. Loss-levels of both, the original and the redesigned higher loaded blade were identical at design condition, but the new design achieved even lower losses at lower inlet Mach numbers. The computational design and analysis has been performed by a fast inviscid time-dependent code coupled to a viscous direct/inverse integral boundary-layer code. Good agreement was achieved between measured and predicted surface Mach number distributions as well as exit-flow angles. A boundary-layer visualization method has been used to detect laminar separation bubbles and turbulent separation regions. Quantitative results of measured bubble positions are presented and compared to calculated results.


2004 ◽  
Vol 126 (4) ◽  
pp. 473-481 ◽  
Author(s):  
Hirotaka Higashimori ◽  
Kiyoshi Hasagawa ◽  
Kunio Sumida ◽  
Tooru Suita

Requirements for aeronautical gas turbine engines for helicopters include small size, low weight, high output, and low fuel consumption. In order to achieve these requirements, development work has been carried out on high efficiency and high pressure ratio compressors. As a result, we have developed a single stage centrifugal compressor with a pressure ratio of 11 for a 1000 shp class gas turbine. The centrifugal compressor is a high transonic compressor with an inlet Mach number of about 1.6. In high inlet Mach number compressors, the flow distortion due to the shock wave and the shock boundary layer interaction must have a large effect on the flow in the inducer. In order to ensure the reliability of aerodynamic design technology, the actual supersonic flow phenomena with a shock wave must be ascertained using measurement and Computational Fluid Dynamics (CFD). This report presents the measured results of the high transonic flow at the impeller inlet using Laser Doppler Velocimeter (LDV) and verification of CFD, with respect to the high transonic flow velocity distribution, pressure distribution, and shock boundary layer interaction at the inducer. The impeller inlet tangential velocity is about 460 m/s and the relative Mach number reaches about 1.6. Using a LDV, about 500 m/s relative velocity was measured preceding a steep deceleration of velocity. The following steep deceleration of velocity at the middle of blade pitch clarified the cause as being the pressure rise of a shock wave, through comparison with CFD as well as comparison with the pressure distribution measured using a high frequency pressure transducer. Furthermore, a reverse flow is measured in the vicinity of casing surface. It was clarified by comparison with CFD that the reverse flow is caused by the shock-boundary layer interaction. Generally CFD shows good agreement with the measured velocity distribution at the inducer and splitter inlet, except in the vicinity of the casing surface.


Author(s):  
Hirotaka Higashimori ◽  
Kiyoshi Hasagawa ◽  
Kunio Sumida ◽  
Tooru Suita

Requirements for aeronautical gas turbine engines for helicopters include small size, low weight, high output, and low fuel consumption. In order to achieve these requirements, development work has been carried out on high efficiency and high pressure ratio compressors. As a result, we have developed a single stage centrifugal compressor with a pressure ratio of 11 for a 1000 shp class gas turbine. The centrifugal compressor is a high transonic compressor with an inlet Mach number of about 1.6. In high inlet Mach number compressors, the flow distortion due to the shock wave and the shock boundary layer interaction must have a large effect on the flow in the inducer. In order to ensure the reliability of aerodynamic design technology, the actual supersonic flow phenomena with a shock wave must be ascertained using measurement and CFD. This report presents the measured results of the high transonic flow at the impeller inlet using LDV and verification of CFD, with respect to the high transonic flow velocity distribution, pressure distribution and shock boundary layer interaction at the inducer. The impeller inlet tangential velocity is about 460m/s and the relative Mach number reaches about 1.6. Using an LDV, about 500m/s relative velocity was measured preceding a steep deceleration of velocity. The following steep deceleration of velocity at the middle of blade pitch clarified the cause as being the pressure rise of a shock wave, through comparison with CFD as well as comparison with the pressure distribution measured using a high frequency pressure transducer. Furthermore, a reverse flow is measured in the vicinity of casing surface. It was clarified by comparison with CFD that the reverse flow is caused by the shock-boundary layer interaction. Generally CFD shows good agreement with the measured velocity distribution at the inducer and splitter inlet, except in the vicinity of the casing surface.


1998 ◽  
Vol 120 (2) ◽  
pp. 224-232 ◽  
Author(s):  
M. Durali ◽  
J. L. Kerrebrock

The structure and behavior of wakes from a transonic compressor rotor and their effect on the loading and performance of the downstream stator have been investigated experimentally. The rotor was 23.25 inches in diameter with a measured tip Mach number of 1.23 and a pressure ratio of 1.66. Time and space-resolved measurements have been completed of the rotor and stator outflow, as well of the pressure distribution on the surface of the stator blades. It was found that the wakes from this rotor have large flow angle and flow Mach number variations from the mean flow, significant pressure fluctuations, and a large degree of variation from hub to tip. There was a significant total pressure defect and practically no static pressure variation associated with the stator wakes. Wakes from the rotor exist nearly undiminished in the exit flow of the stator and decay in the annular duct behind the stator. The pressure at all points along the chord over each of the stator blades’ surfaces fluctuated nearly in phase in response to the rotor wakes, that is the unsteady chordwise pressure distribution is determined mainly by the change in angle of incidence to the blade and not by the local velocity fluctuations within the passage. The unsteady forces on the stator blades, induced by the rotor wakes, were as high as 25 percent of the steady forces, and lagged the incidence of the wakes on the leading edge by approximately 180 deg at most radii.


1987 ◽  
Vol 177 ◽  
pp. 247-263 ◽  
Author(s):  
G. Degrez ◽  
C. H. Boccadoro ◽  
J. F. Wendt

An investigation of an oblique shock wave/laminar boundary layer interaction is presented. The Mach number was 2.15, the Reynolds number was 105 and the overall pressure ratio was 1.55. The interation has been demonstrated to be laminar and nominally two-dimensional. Experimental results include pressure distributions on the plate and single component laser-Doppler velocimetry velocity measurements both in the attached and separated regions.The numerical results have been obtained by solving the full compressible Navier-Stokes equations with the implicit approximate factorization algorithm by Beam & Warming (1980). Comparison with experimental data shows good agreement in terms of pressure distributions, positions of separation and reattachment and velocity profiles.


Author(s):  
Takanori Yamazaki ◽  
Masaki Endo

A useful way to estimate the local Mach number of shock propagating in a pipe is proposed in this paper. The shock Mach number, or the shock strength gradually decreases or increases as the shock propagates downstream in pipe due to the shock-boundary layer interaction. In general, the shock Mach number is estimated through the measurement of the time, which it takes for the shock to propagate between any two points along the pipe. This technique is very useful if the decreasing rate of the shock strength is given and it, after all, yields the average Mach number between the two points. In this paper the measurement of the local Mach number of shock in the shock tube is examined using one pressure transducer. The pressure history after the shock reaches the pressure tap is analyzed. The method to estimate the local Mach number is discussed considering the dynamic characteristic of the pressure transducer.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4168
Author(s):  
Botao Zhang ◽  
Xiaochen Mao ◽  
Xiaoxiong Wu ◽  
Bo Liu

To explain the effect of tip leakage flow on the performance of an axial-flow transonic compressor, the compressors with different rotor tip clearances were studied numerically. The results show that as the rotor tip clearance increases, the leakage flow intensity is increased, the shock wave position is moved backward, and the interaction between the tip leakage vortex and shock wave is intensified, while that between the boundary layer and shock wave is weakened. Most of all, the stall mechanisms of the compressors with varying rotor tip clearances are different. The clearance leakage flow is the main cause of the rotating stall under large rotor tip clearance. However, the stall form for the compressor with half of the designed tip clearance is caused by the joint action of the rotor tip stall caused by the leakage flow spillage at the blade leading edge and the whole blade span stall caused by the separation of the boundary layer of the rotor and the stator passage. Within the investigated varied range, when the rotor tip clearance size is half of the design, the compressor performance is improved best, and the peak efficiency and stall margin are increased by 0.2% and 3.5%, respectively.


1991 ◽  
Author(s):  
A. Weber ◽  
W. Steinert ◽  
H. Starken

Efforts to reduce the specific fuel consumption of a modern aero engine focus in particular on increasing the by-pass ratio beyond the current level of around 5. One concept is the counterrotating shrouded propfan operating at low overall pressure ratio and having only very few fan blades of extremely high pitch/chord ratios. The relative inlet Mach numbers cover a range from 0.7 at the hub to 1.1 at the tip section of the first rotor. A propfan cascade was designed by taking into account two characteristic features of a propfan blade-blade section: • a very high pitch/chord ratio of s/c = 2.25 • an inlet Mach number of M1 = 0.90 which leads to transonic flow conditions inside the blade passage In the design process a profile generator and a quasi-3D Euler solver were used iteratively to optimize the profile Mach number distribution. Boundary layer behavior was checked with an integral boundary layer code. The cascade design was verified experimentally in the transonic cascade wind tunnel of DLR at Cologne. The extensive experimental results confirm the design goal of roughly 5 degree flow turning. A total pressure loss coefficient of less than 1.5% was measured at design conditions. This validates the very high efficiency level the propfan concept is calling for. A 2D Navier-Stokes flow analysis code yields good results in comparison to the experimental ones.


1988 ◽  
Vol 110 (3) ◽  
pp. 386-392 ◽  
Author(s):  
D. C. Rabe ◽  
A. J. Wennerstrom ◽  
W. F. O’Brien

The passage shock wave–endwall boundary layer interaction in a transonic compressor was investigated with a laser transit anemometer. The transonic compressor used in this investigation was developed by the General Electric Company under contract to the Air Force. The compressor testing was conducted in the Compressor Research Facility at Wright-Patterson Air Force Base, OH. Laser measurements were made in two blade passages at seven axial locations from 10 percent of the axial blade chord in front of the leading edge to 30 percent of the axial blade chord into the blade passage. At three of these axial locations, laser traverses were taken at different radial immersions. A total of 27 different locations were traversed circumferentially. The measurements reveal that the endwall boundary layer in this region is separated from the core flow by what appears to be a shear layer where the passage shock wave and all ordered flow seem to end abruptly.


2021 ◽  
pp. 1-51
Author(s):  
Yingjie Zhang ◽  
Xingen Lu ◽  
Yanfeng Zhang ◽  
Ziqing Zhang ◽  
Xu Dong ◽  
...  

Abstract This paper describes the stall mechanism in an ultra-high-pressure-ratio centrifugal compressor. A model comprising all impeller and diffuser blade passages is used to conduct unsteady simulations that trace the onset of instability in the compressor. Backward-traveling rotating stall waves appear at the inlet of the radial diffuser when the compressor is throttled. Six stall cells propagate circumferentially at approximately 0.7% of the impeller rotation speed. The detached shock of the radial diffuser leading edge and the number of stall cells determine the direction of stall propagation, which is opposite to the impeller rotation direction. Dynamic mode decomposition is applied to instantaneous flow fields to extract the flow structure related to the stall mode. This shows that intensive pressure fluctuations concentrate in the diffuser throat as a result of changes in the detached shock intensity. The diffuser passage stall and stall recovery are accompanied by changes in incidence angle and shock wave intensity. When the diffuser passage stalls, the shock-induced boundary-layer separation region near the diffuser vane suction surface gradually expands, increasing the incidence angle and decreasing the shock intensity. The shock is pushed from the diffuser throat toward the diffuser leading edge. When the diffuser passage recovers from stall, the shock wave gradually returns to the diffuser throat, with the incidence angle decreasing and the shock intensity increasing. Once the shock intensity reaches its maximum, the diffuser passage suffers severe shock-induced boundary-layer separation and stalls again.


Sign in / Sign up

Export Citation Format

Share Document