Unsteady RANS Simulation of Turbulent Flow and Heat Transfer in Ribbed Coolant Passages of Different Aspect Ratios

Author(s):  
A. K. Saha ◽  
Sumanta Acharya

The flow and heat transfer in ribbed coolant passages of aspect ratios (AR) of 1:1, 4:1, and 1:4 are numerically studied through the solution of the Unsteady Reynolds Averaged Navier-Stokes (URANS) equations. The ribs are oriented normal to the flow and arranged in a staggered configuration on the leading and trailing surfaces. The URANS procedure can resolve large-scale bulk unsteadiness, and utilizes a two equation k-ε model for the turbulent stresses. Both Coriolis and centrifugal buoyancy effects are included in the simulations. The computations are carried out for a fixed Reynolds number of 25000 and density ratio of 0.13 while the Rotation number has been varied between 0.12–0.50. The average duct heat transfer is the highest for the 4:1 AR case. For this case, the secondary flow structures consist of multiple roll cells that direct flow both to the trailing and leading surfaces. The 1:4 AR duct shows flow reversal along the leading surface at high rotation numbers with multiple rolls in the secondary flow structures near the leading wall. For this AR, the potential for conduction-limited heat transfer along the leading surface is identified. At high rotation number, both the 1:1 and 4:1 AR cases exhibit loss of axial periodicity over one inter-rib module. The friction factor reveals an increase with the rotation number for all aspect ratio ducts, and shows a sudden jump in its value at a critical rotation number because of either loss of spatial periodicity or the onset of backflow.

2003 ◽  
Vol 125 (1) ◽  
pp. 19-26 ◽  
Author(s):  
Mohammad Al-Qahtani ◽  
Hamn-Ching Chen ◽  
Je-Chin Han

Computations were performed to study three-dimensional turbulent flow and heat transfer in stationary and rotating 45 deg ribbed rectangular channels for which experimental heat transfer data were available. The channel aspect ratio (AR) is 4:1, the rib height-to-hydraulic diameter ratio e/Dh is 0.078 and the rib-pitch-to-height ratio P/e is 10. The rotation number and inlet coolant-to-wall density ratios, Δρ/ρ, were varied from 0.0 to 0.28 and from 0.122 to 0.40, respectively, while the Reynolds number was fixed at 10,000. Also, two channel orientations (β=90deg and 135 deg from the rotation direction) were investigated with focus on the high rotation and high density ratios effects on the heat transfer characteristics of the 135 deg orientation. These results show that, for high rotation and high density ratio, the rotation induced secondary flow overpowered the rib induced secondary flow and thus change significantly the heat transfer characteristics compared to the low rotation low density ratio case. A multi-block Reynolds-Averaged Navier-Stokes (RANS) method was employed in conjunction with a near-wall second-moment turbulence closure. In the present method, the convective transport equations for momentum, energy, and turbulence quantities are solved in curvilinear, body-fitted coordinates using the finite-analytic method.


2006 ◽  
Vol 129 (6) ◽  
pp. 685-696 ◽  
Author(s):  
Guoguang Su ◽  
Hamn-Ching Chen ◽  
Je-Chin Han

Computations with multi-block chimera grids were performed to study the three-dimensional turbulent flow and heat transfer in a rotating rectangular channel with staggered arrays of pin-fins. The channel aspect ratio (AR) is 4:1, the pin length to diameter ratio (H∕D) is 2.0, and the pin spacing to diameter ratio is 2.0 in both the stream-wise (S1∕D) and span-wise (S2∕D) directions. A total of six calculations have been performed with various combinations of rotation number, Reynolds number, and coolant-to-wall density ratio. The rotation number and inlet coolant-to-wall density ratio varied from 0.0 to 0.28 and from 0.122 to 0.20, respectively, while the Reynolds number varied from 10,000 to 100,000. For the rotating cases, the rectangular channel was oriented at 150deg with respect to the plane of rotation to be consistent with the configuration of the gas turbine blade. A Reynolds-averaged Navier-Stokes (RANS) method was employed in conjunction with a near-wall second-moment turbulence closure for detailed predictions of mean velocity, mean temperature, and heat transfer coefficient distributions.


Author(s):  
Lesley M. Wright ◽  
Eungsuk Lee ◽  
Je-Chin Han

The effect of rotation on smooth narrow rectangular channels and narrow rectangular channels with pin-fins is investigated in this study. Pin-fins are commonly used in the narrow sections within the trailing edge of the turbine blade; the pin-fins act as turbulators to enhance internal cooling while providing structural support in this narrow section of the blade. The rectangular channel is oriented at 150° with respect to the plane of rotation, and the focus of the study involves narrow channels with aspect ratios of 4:1 and 8:1. The enhancement due to both conducting (copper) pin-fins and non-conducting (plexi-glass) pins is investigated. Due to the varying aspect ratio of the channel, the height-to-diameter ratio (hp/Dp) of the pins varies from two, for an aspect ratio of 4:1, to unity, for an aspect ratio of 8:1. A staggered array of pins with uniform streamwise and spanwise spacing (xp/Dp = sp/Dp = 2.0) is studied. With this array, 42 pin-fins are used, giving a projected surface density of 3.5 pins/in2 (0.543 pins/cm2), for the leading or trailing surfaces. The range of flow parameters include Reynolds number (ReDh = 5000–20000), rotation number (Ro = 0.0–0.302), and inlet coolant-to-wall density ratio (Δρ/ρ = 0.12). Heat transfer in a stationary pin-fin channel can be enhanced up to 3.8 times that of a smooth channel. Rotation enhances the heat transferred from the pin-fin channels 1.5 times that of the stationary pin-fin channels. Overall, rotation enhances the heat transfer from all surfaces in both the smooth and pin-fin channels. Finally, as the rotation number increases, spanwise variation increases in all channels.


Author(s):  
Guoguang Su ◽  
Hamn-Ching Chen ◽  
Je-Chin Han ◽  
James D. Heidmann

Numerical predictions of three-dimensional flow and heat transfer are presented for rotating two-pass rectangular channel with 45-deg rib turbulators. Three channels with different aspect ratios (AR=1:1; AR=1:2; AR=1:4) were investigated. Detailed predictions of mean velocity, mean temperature, and Nusselt number for two Reynolds numbers (Re = 10,000 and Re = 100,000) were carried out. The rib height is fixed as constant and the rib-pitch-to-height ratio (P/e) is 10, but the rib height-to-hydraulic diameter ratios (e/Dh) are 0.125, 0.094, and 0.078, for AR=1:1, AR=1:2, and AR=1:4 channel, respectively. The channel orientations are set at 90 deg, corresponding to the cooling passages between mid-portion and the leading edge of a turbine blade. The rotation number varies from 0.0 to 0.28 and the inlet coolant-to-wall density ratio varies from 0.13 to 0.40, respectively. The primary focus of this study is the effect of the channel aspect ratio on the nature of the flow and heat transfer enhancement in a rectangular ribbed channel under rotating conditions. A multi-block Reynolds-averaged Navier-Stokes (RANS) method was employed in conjunction with a near-wall second-moment turbulence closure to provide detailed resolution of the Reynolds stresses and turbulent heat fluxes induced by the rib turbulators under both the stationary and rotating conditions.


Author(s):  
Guoguang Su ◽  
Hamn-Ching Chen ◽  
Je-Chin Han

Computations with multi-block chimera grids were performed to study the three-dimensional turbulent flow and heat transfer in a rotating rectangular channel with staggered arrays of pin-fins. The channel aspect ratio (AR) is 4:1, the pin length to diameter ratio (H/D) is 2.0, and the pin spacing to diameter ratio is 2.0 in both the stream-wise (S1/D) and span-wise (S2/D) directions. A total of six calculations have been performed with various combinations of rotation number, Reynolds number, and coolant-to-wall density ratio. The rotation number and inlet coolant-to-wall density ratio varied from 0.0 to 0.28 and from 0.122 to 0.20, respectively, while the Reynolds number varied from 10,000 to 100,000. For the rotating cases, the rectangular channel was oriented at 150 deg with respect to the plane of rotation to be consistent with the configuration of the gas turbine blade. A Reynolds-Averaged Navier-Stokes (RANS) method was employed in conjunction with a near-wall second-moment turbulence closure for detailed predictions of mean velocity, mean temperature, and heat transfer coefficient distributions.


Author(s):  
A. K. Saha ◽  
Sumanta Acharya

Large Eddy Simulations (LES) and Unsteady Reynolds Averaged Navier-Stokes (URANS) simulations have been performed for flow and heat transfer in a rotating ribbed duct. The ribs are oriented normal to the flow and arranged in a staggered configuration on the leading and trailing surfaces. The LES results are based on a higher-order accurate finite difference scheme with a dynamic Smagorinsky model for the subgrid stresses. The URANS procedure utilizes a two equation k-ε model for the turbulent stresses. Both Coriolis and centrifugal buoyancy effects are included in the simulations. The URANS computations have been carried out for a wide range of Reynolds number (Re = 12,500–100,000), rotation number (Ro = 0–0.5) and density ratio (Δρ/ρ = 0–0.5), while LES results are reported for a single Reynolds number of 12,500 without and with rotation (Ro = 0.12, Δρ/ρ = 0.13). Comparison is made between the LES and URANS results, and the effects of various parameters on the flow field and surface heat transfer are explored. The LES results clearly reflect the importance of coherent structures in the flow, and the unsteady dynamics associated with these structures. The heat transfer results from both LES and URANS are found to be in reasonable agreement with measurements. LES is found to give higher heat transfer predictions (5–10% higher) than URANS. The Nusselt number ratio (Nu/Nu0) is found to decrease with increasing Reynolds number on all walls, while they increase with the density ratio along the leading and trailing walls. The Nusselt number ratio on the trailing and side walls also increases with rotation. However, the leading wall Nusselt number ratio shows an initial decrease with rotation (till Ro = 0.12) due to the stabilizing effect of rotation on the leading wall. However, beyond Ro = 0.12, the Nusselt number ratio increases with rotation due to the importance of centrifugal-buoyancy at high rotation.


Author(s):  
Guoguang Su ◽  
Shuye Teng ◽  
Hamn-Ching Chen ◽  
Je-Chin Han

Computations were performed to study three-dimensional turbulent flow and heat transfer in a rotating rectangular channel with 45° V-shaped ribs. The channel aspect ratio (AR) is 4:1, the rib height-to-hydraulic diameter ratio (e/Dh) is 0.078 and the rib-pitch-to-height ratio (P/e) is 10. A total of eight calculations have been performed with various combinations of rotation number, Reynolds number, coolant-to-wall density ratio, and channel orientation. The rotation number and inlet coolant-to-wall density ratio varied from 0.0 to 0.28 and from 0.122 to 0.40, respectively, while the Reynolds number varied from 10,000 to 500,000. Three channel orientations (90°, −135°, and 135° from the rotation direction) were also investigated. A multi-block Reynolds-Averaged Navier-Stokes (RANS) method was employed in conjunction with a near-wall second-moment turbulence closure for detailed predictions of mean velocity, mean temperature, turbulent Reynolds stresses, and heat fluxes and heat transfer coefficients.


Author(s):  
Hang Seok Choi ◽  
Tae Seon Park

The turbulent flow fields of a parallel plate or channel with spatially periodic condition have been widely investigated by many researchers. However the rectangular or square curved duct flow has not been fundamentally scrutinized in spite of its engineering significance, especially for cooling device. Hence, in the present study large eddy simulation is applied to the turbulent flow and heat transfer in a rectangular duct with 180° curved angle varying its aspect ratio. The turbulent flow and the thermal fields are calculated and the representative vortical motions generated by the secondary flow are investigated. From the results, the secondary flow has a great effect on the heat and momentum transport in the flow. With changing the aspect ratio, the effect of the geometrical variation to the secondary flow and its influence on the turbulent characteristics of the flow and heat transfer are studied.


2004 ◽  
Vol 127 (2) ◽  
pp. 306-320 ◽  
Author(s):  
A. K. Saha ◽  
Sumanta Acharya

Large eddy simulations (LES) and unsteady Reynolds averaged Navier-Stokes (URANS) simulations have been performed for flow and heat transfer in a rotating ribbed duct. The ribs are oriented normal to the flow and arranged in a staggered configuration on the leading and trailing surfaces. The LES results are based on a higher-order accurate finite difference scheme with a dynamic Smagorinsky model for the subgrid stresses. The URANS procedure utilizes a two equation k-ε model for the turbulent stresses. Both Coriolis and centrifugal buoyancy effects are included in the simulations. The URANS computations have been carried out for a wide range of Reynolds number (Re=12,500-100,000), rotation number (Ro=0-0.5) and density ratio (Δρ∕ρ=0-0.5), while LES results are reported for a single Reynolds number of 12,500 without and with rotation (Ro=0.12,Δρ∕ρ=0.13). Comparison is made between the LES and URANS results, and the effects of various parameters on the flow field and surface heat transfer are explored. The LES results clearly reflect the importance of coherent structures in the flow, and the unsteady dynamics associated with these structures. The heat transfer results from both LES and URANS are found to be in reasonable agreement with measurements. LES is found to give higher heat transfer predictions (5–10% higher) than URANS. The Nusselt number ratio (Nu∕Nu0) is found to decrease with increasing Reynolds number on all walls, while they increase with the density ratio along the leading and trailing walls. The Nusselt number ratio on the trailing and sidewalls also increases with rotation. However, the leading wall Nusselt number ratio shows an initial decrease with rotation (till Ro=0.12) due to the stabilizing effect of rotation on the leading wall. However, beyond Ro=0.12, the Nusselt number ratio increases with rotation due to the importance of centrifugal-buoyancy at high rotation.


Sign in / Sign up

Export Citation Format

Share Document