Arrangement and Optimisation Turbocompressors in an Off-Shore Natural Gas Extraction Station

Author(s):  
M. Pinelli ◽  
A. Mazzi ◽  
G. Russo

In this paper, a methodology for the optimization of a single off-shore gas compression station is developed. The station is composed of three gas turbines, each one driving a centrifugal compressor. The study concerns the feasibility of the most suitable arrangement to face the depletion of wells and the consequent reduction of the head top pressure. Once the arrangement is chosen, an optimization procedure is developed and carried out. The procedure, which is aimed at obtaining either high production rates or good station efficiency, is based on knowledge of the centrifugal compressor characteristics and on the availability of gas turbine thermodynamic cycle program, the latter allowing the definition of the machine actual operating state.

Author(s):  
Adrian W. McAnneny

Three years ago a survey was made of the various prime movers available to the pipeline industry for gas compression. This survey included gas turbines and two and four-cycle reciprocating gas engines. The purpose of this study was to determine which of the existing equipments would be most economical and whether or not there was a need for the development of additional equipment. As a result of this economic study, it appeared there was a definite requirement in the industry for a high-speed, low-cost, gas turbine-centrifugal compressor unit for both field and main-line-station gas compression. As a result of the studies two gas-turbine-driven centrifugal compressor units were placed in operation early in 1960 at Cypress Station near Houston, waste-heat recovery systems being installed in the summer of 1961. Performance tests were satisfactory and subsequently six small gas-engine-driven compressor units have been installed at two main-line compressor stations.


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Michele Pinelli ◽  
Pier Ruggero Spina ◽  
Mauro Venturini

A reduction of gas turbine maintenance costs, together with the increase in machine availability and the reduction of management costs, is usually expected when gas turbine preventive maintenance is performed in parallel to on-condition maintenance. However, on-condition maintenance requires up-to-date knowledge of the machine health state. The gas turbine health state can be determined by means of Gas Path Analysis (GPA) techniques, which allow the calculation of machine health state indices, starting from measurements taken on the machine. Since the GPA technique makes use of field measurements, the reliability of the diagnostic process also depends on measurement reliability. In this paper, a comprehensive approach for both the measurement validation and health state determination of gas turbines is discussed, and its application to a 5 MW gas turbine working in a natural gas compression plant is presented.


Author(s):  
Yoshiharu Tsujikawa ◽  
Makoto Nagaoka

This paper is devoted to the analyses and optimization of simple and sophisticated cycles, particularly for various gas turbine engines and aero-engines (including scramjet engine) to achive the maximum performance. The optimization of such criteria as thermal efficiency, specific output and total performance for gas turbine engines, and overall efficiency, non-dimensional thrust and specific impulse for aero-engines have been performed by the optimization procedure with multiplier method. The comparisons of results with analytical solutions establishes the validity of the optimization procedure.


2018 ◽  
Vol 140 (11) ◽  
Author(s):  
A. Toffolo ◽  
S. Rech ◽  
A. Lazzaretto

The fundamental challenge in the synthesis/design optimization of energy systems is the definition of system configuration and design parameters. The traditional way to operate is to follow the previous experience, starting from the existing design solutions. A more advanced strategy consists in the preliminary identification of a superstructure that should include all the possible solutions to the synthesis/design optimization problem and in the selection of the system configuration starting from this superstructure through a design parameter optimization. This top–down approach cannot guarantee that all possible configurations could be predicted in advance and that all the configurations derived from the superstructure are feasible. To solve the general problem of the synthesis/design of complex energy systems, a new bottom–up methodology has been recently proposed by the authors, based on the original idea that the fundamental nucleus in the construction of any energy system configuration is the elementary thermodynamic cycle, composed only by the compression, heat transfer with hot and cold sources and expansion processes. So, any configuration can be built by generating, according to a rigorous set of rules, all the combinations of the elementary thermodynamic cycles operated by different working fluids that can be identified within the system, and selecting the best resulting configuration through an optimization procedure. In this paper, the main concepts and features of the methodology are deeply investigated to show, through different applications, how an artificial intelligence can generate system configurations of various complexity using preset logical rules without any “ad hoc” expertise.


2021 ◽  
Author(s):  
Bennasr Hichem ◽  
M’Sahli Faouzi

The multimodel approach is a research subject developed for modeling, analysis and control of complex systems. This approach supposes the definition of a set of simple models forming a model’s library. The number of models and the contribution of their validities is the main issues to consider in the multimodel approach. In this chapter, a new theoretical technique has been developed for this purpose based on a combination of probabilistic approaches with different objective function. First, the number of model is constructed using neural network and fuzzy logic. Indeed, the number of models is determined using frequency-sensitive competitive learning algorithm (FSCL) and the operating clusters are identified using Fuzzy K- means algorithm. Second, the Models’ base number is reduced. Focusing on the use of both two type of validity calculation for each model and a stochastic SVD technique is used to evaluate their contribution and permits the reduction of the Models’ base number. The combination of FSCL algorithms, K-means and the SVD technique for the proposed concept is considered as a deterministic approach discussed in this chapter has the potential to be applied to complex nonlinear systems with dynamic rapid. The recommended approach is implemented, reviewed and compared to academic benchmark and semi-batch reactor, the results in Models’ base reduction is very important witch gives a good performance in modeling.


1979 ◽  
Vol 101 (1) ◽  
pp. 186-194
Author(s):  
R. Buchheim

Experimental and theoretical investigations on conventional diffusion flame type combustors and on premix/prevaporize combustors were performed. The range of pollutant levels attainable with the various types of combustors is analyzed. The effect of different fuel nozzles, various fuels, and gas turbine thermodynamic cycle data on exhaust emissions is shown. Correlations are developed as far as possible.


2012 ◽  
Vol 134 (6) ◽  
Author(s):  
R. Schnell ◽  
J. Yin ◽  
C. Voss ◽  
E. Nicke

The present study demonstrates the aerodynamic and acoustic optimization potential of a counter rotating open rotor. The objective was to maximize the propeller efficiency at top of climb conditions and to minimize the noise emission at takeoff while fulfilling the given thrust specifications at two operating conditions (takeoff and top of climb) considered. Both objectives were successfully met by applying an efficient multi-objective optimization procedure in combination with a 3D RANS method. The acoustic evaluation was carried out with a coupled U-RANS and an analytic far field prediction method based on an integral Ffowcs Williams-Hawkings approach. This first part of the paper deals with the application of DLR’s CFD method TRACE to counter rotating open rotors. This study features the choice and placement of boundary conditions, resolution requirements, and a corresponding meshing strategy. The aerodynamic performance in terms of thrust, torque, and efficiency was evaluated based on steady state calculations with a mixing plane placed in between both rotors, which allowed for an efficient and reliable evaluation of the performance, in particular, within the automatic optimization. The aerodynamic optimization was carried by the application of AutoOpti, a multi-objective optimization procedure based on an evolutionary algorithm, which also was developed at the Institute of propulsion technology at DLR. The optimization presented in this paper features more than 1600 converged 3D steady-state CFD simulations at two operating conditions, takeoff and top of climb, respectively. In order to accelerate the optimization process, a surrogate model based on a Kriging interpolation on the response surfaces was introduced. The main constrains and regions of interest during the optimization were a given power split between the rotors at takeoff, retaining an axial outflow at the aft rotor exit at top of climb, and fulfilling the given thrust specifications at both operating conditions. Two objectives were defined: One was to maximize the (propeller) efficiency at top of climb conditions. The other objective was an acoustic criteria aiming at decreasing the rotor/rotor interaction noise at takeoff by smoothening the front rotor wakes. Approximately 100 geometric parameters were set free during the optimization to allow for a flexible definition of the 3D blade geometry in terms of rotor sweep, aft rotor clipping, hub contour as well as a flexible definition of different 2D profiles at different radial locations. The acoustic evaluation was carried out based on unsteady 3D-RANS computations with the same CFD method (TRACE) involving an efficient single-passage phase-lag approach. These unsteady results were coupled with the integral Ffowcs Williams-Hawkings method APSIM via a permeable control surface covering both rotors. The far field directivities and spectra for a linear microphone array were evaluated, here mainly at the takeoff certification point. This (still time consuming) acoustic evaluation was carried out after the automatic optimization for a few of the most promising individuals only, and results will be presented in comparison with the baseline configuration. This detailed acoustic evaluation also allowed for an assessment of the effectiveness of the acoustic cost function as introduced within the automatic optimization.


Sign in / Sign up

Export Citation Format

Share Document