The Effect of Roughness Element Fillet Radii on the Heat Transfer Enhancement in an Impingement Cooling System

Author(s):  
Changmin Son ◽  
Peter Ireland ◽  
David Gillespie

The combination of roughness elements with an impingement cooling systems offers an attractive means of achieving high heat transfer. Considerable care must be taken to choose the shape, size and the position of the roughness elements to maximise heat transfer and minimise pressure loss. In the last decade, many studies have been investigated the effect of changes in many of the geometric features, but little attention has been paid to the effect of the inevitable fillet. Blades and vanes are normally manufactured by casting so the fillet radius is unavoidable. The present paper investigates the effect of roughness element fillet radii on heat transfer enhancement in an impingement cooling system. Three configurations with streamwise ribs were studied. The streamwise ribs are all trapezoidal in cross section. In the three configurations the fillet radii are (1) 0mm (sharp-edged), (2) 3mm, and (3) 5mm. The extra heat transfer area of the sharp-edged, 3mm fillet and the 5mm fillet rib configurations are reported. Two-staggered arrays (a uniform & non-uniform hole diameter array) of impingement plates are used. The jets from odd numbered rows impinge between the ribs while the jets from even numbered rows impinge onto the ribs. Tests were conducted at three different mass flow rates for each configuration. The average and local jet Reynolds numbers varied between 21500 and 31500, and 17000 and 41000 respectively. The transient liquid crystal technique was used to produce detailed Nusselt number distributions and row resolved average Nusselt number levels. The heat transfer enhancement and pressure loss due to the streamwise ribs are also compared to the smooth surface impingement cooling channel. The research showed that the streamwise ribs with fillet radii produced lower Nusselt number levels than both sharp-edged ribs and impingement onto a smooth surface.

Author(s):  
Changmin Son ◽  
Geoffery Dailey ◽  
Peter Ireland ◽  
David Gillespie

The inclusion of roughness elements on the target surface of a turbine aerofoil impingement cooling system is an attractive means of heat transfer enhancement. In such a system, it is important to minimise additional pressure loss caused by the roughness elements and thus their shape, size and position need to be optimised. The research showed how heat transfer enhancement is normally achieved at the expense of extra pressure loss. A hexagonal roughness element designed by the authors showed up to 10% heat transfer enhancement with minimal extra pressure loss. The present work includes shear pattern visualisation on the target surface, pressure loss measurements and heat transfer coefficient measurements for an impingement cooling system with simply shaped roughness elements-specifically cylindrical & diamond pimples. Flow visualisation results and pressure loss measurements for the above configurations provided criteria for selecting the shape, size and position of the roughness elements. The detailed heat transfer measurements on the target surface and over the roughness elements were used to explain the heat transfer enhancement mechanisms. It was found that the largest contribution to heat transfer is the impingement stagnation point and the developing wall jet regions. However, the research showed that the low heat transfer coefficient region could be made to contribute more by using strategically located roughness elements. A hexagonal rim was designed to cover the complete low heat transfer coefficient region midway between neighbouring jets. The effect of the height, cross sectional shape and wall angle of the hexagonal rim were studied using a series of heat transfer and pressure loss experiments. The transient heat transfer tests were conducted using a triple thermochromic liquid crystal technique and the thermal transient was produced by a fine wire mesh heater. The heat transfer coefficient over the pimples was measured using a hybrid transient method that analysed the thermal transient of the copper pimple. The detailed heat transfer coefficient distributions over the complete area of the target surface provided comprehensive understanding of the performance of the hexagonal rim. Tests were conducted at three different mass flow rates for each configuration. The average and local jet Reynolds numbers varied between 21500 and 31500, and 17000 and 41000 respectively.


2012 ◽  
Vol 134 (10) ◽  
Author(s):  
Ting-Yu Lin ◽  
Satish G. Kandlikar

The effect of structured roughness on the heat transfer of water flowing through minichannels was experimentally investigated in this study. The test channels were formed by two 12.7 mm wide × 94.6 mm long stainless steel strips. Eight structured roughness elements were generated using a wire electrical discharge machining (EDM) process as lateral grooves of sinusoidal profile on the channel walls. The height of the roughness structures ranged from 18 μm to 96 μm, and the pitch was varied from 250 μm to 400 μm. The hydraulic diameter of the rectangular flow channels ranged from 0.71 mm to 1.87 mm, while the constricted hydraulic diameter (obtained by using the narrowest flow gap) ranged from 0.68 mm to 1.76 mm. After accounting for heat losses from the edges and end sections, the heat transfer coefficient for smooth channels was found to be in good agreement with the conventional correlations in the laminar entry region as well as in the laminar fully developed region. All roughness elements were found to enhance the heat transfer. In the ranges of parameters tested, the roughness element pitch was found to have almost no effect, while the heat transfer coefficient was significantly enhanced by increasing the roughness element height. An earlier transition from laminar to turbulent flow was observed with increasing relative roughness (ratio of roughness height to hydraulic diameter). For the roughness element designated as B-1 with a pitch of 250 μm, roughness height of 96 μm and a constricted hydraulic diameter of 690 μm, a maximum heat transfer enhancement of 377% was obtained, while the corresponding friction factor increase was 371% in the laminar fully developed region. Comparing different enhancement techniques reported in the literature, the highest roughness element tested in the present work resulted in the highest thermal performance factor, defined as the ratio of heat transfer enhancement factor (over smooth channels) and the corresponding friction enhancement factor to the power 1/3.


Author(s):  
Ken-Ichiro Takeishi ◽  
Robert Krewinkel ◽  
Yutaka Oda ◽  
Yuichi Ichikawa

In the near future, when designing and using Double Wall Airfoils, which will be manufactured by 3D printers, the positional relationship between the impingement cooling nozzle and the heat transfer enhancement ribs on the target plate naturally becomes more accurate. Taking these circumstances into account, an experimental study was conducted to enhance the heat transfer of the wall jet region of a round impingement jet cooling system. This was done by installing circular ribs or vortex generators (VGs) in the impingement cooling wall jet region. The local heat transfer coefficient was measured using the naphthalene sublimation method, which utilizes the analogy between heat and mass transfer. As a result, it was clarified that, within the ranges of geometries and Reynolds numbers at which the experiments were conducted, it is possible to improve the averaged Nusselt number Nu up to 21% for circular ribs and up to 51% for VGs.


Author(s):  
Nojin Park ◽  
Changmin Son ◽  
Jangsik Yang ◽  
Changyong Lee ◽  
Kidon Lee

A series of experiments were conducted to investigate the detailed heat transfer characteristics of a large scaled model of a turbine blade internal cooling system. The cooling system has one passage in the leading edge and a triple passage for the remained region with two U-bends. A large scaled model (2 times) is designed to acquire high resolution measurement. The similarity of the test model was conducted with Reynolds number at the inlet of the internal cooling system. The model is designed to simulate the flow at engine condition including film extractions to match the changes in flowrates through the internal cooling system. Also, 45 deg ribs were installed for heat transfer enhancement. The experiments were performed varying Reynolds number in the range of 20,000 to 100,000 with and without ribs under stationary condition. This study employs transient heat transfer technique using thermochromic liquid crystal (TLC) to obtain full surface heat transfer distributions. The results show the detailed heat transfer distributions and pressure loss. The characteristics of pressure loss is largely dependent on the changes in cross-sectional area along the passages, the presence of U-bends and the extraction of coolant flow through film holes. The local and area averaged Nusselt number were compared to available correlations. Finally, the thermal performance counting the heat transfer enhancement as well as pressure penalty is presented.


Author(s):  
Akira Murata ◽  
Satomi Nishida ◽  
Hiroshi Saito ◽  
Kaoru Iwamoto ◽  
Yoji Okita ◽  
...  

Internal convective cooling of gas-turbine airfoil is essential because turbine inlet temperature becomes higher for pursuing higher thermal efficiency. For higher cooling performance, heat transfer is often enhanced by installing ribs and/or pin-fins in the internal passage. In this study, in order to enhance heat transfer, the combination of spherical dimples, cylindrical protrusions, and transverse square ribs was applied to one wall of a narrow passage. As for the cylindrical protrusions, two different diameter cases were examined. The heat transfer enhancement was measured by a transient infrared thermography method for the Reynolds number of 2,000, 6,000, and 10,000. The pressure loss was also measured in the experiments, and RANS simulation was performed to give a rationale for the experimental results. The present results clearly showed the spatial variation of the local Nusselt number: the high Nusselt number was observed on the rib top-surface and also near the leading edge on the protrusion top-surface. In addition, the areas around the dimple’s trailing-edge on the oblique line connecting the neighbor dimples showed moderately enhanced heat transfer. When two different protrusion-diameter cases were compared, both the mean Nusselt number and the friction factor were similarly higher in the larger protrusion case than the smaller protrusion case, and therefore the larger protrusion case was more effective in cooling even when the pressure loss was taken into account.


Author(s):  
Michael Maurer ◽  
Jens von Wolfersdorf ◽  
Michael Gritsch

An experimental and numerical study was conducted to determine the thermal performance of V-shaped ribs in a rectangular channel with an aspect ratio of 2:1. Local heat transfer coefficients were measured using the steady state thermochromic liquid crystal technique. Periodic pressure losses were obtained with pressure taps along the smooth channel sidewall. Reynolds numbers from 95,000 to 500,000 were investigated with V-shaped ribs located on one side or on both sides of the test channel. The rib height-to-hydraulic diameter ratios (e/Dh) were 0.0625 and 0.02, and the rib pitch-to-height ratio (P/e) was 10. In addition, all test cases were investigated numerically. The commercial software FLUENT™ was used with a two-layer k-ε turbulence model. Numerically and experimentally obtained data were compared. It was determined that the heat transfer enhancement based on the heat transfer of a smooth wall levels off for Reynolds numbers over 200,000. The introduction of a second ribbed sidewall slightly increased the heat transfer enhancement whereas the pressure penalty was approximately doubled. Diminishing the rib height at high Reynolds numbers had the disadvantage of a slightly decreased heat transfer enhancement, but benefits in a significantly reduced pressure loss. At high Reynolds numbers small-scale ribs in a one-sided ribbed channel were shown to have the best thermal performance.


2015 ◽  
Vol 93 (7) ◽  
pp. 725-733 ◽  
Author(s):  
M. Ghalambaz ◽  
E. Izadpanahi ◽  
A. Noghrehabadi ◽  
A. Chamkha

The boundary layer heat and mass transfer of nanofluids over an isothermal stretching sheet is analyzed using a drift-flux model. The relative slip velocity between the nanoparticles and the base fluid is taken into account. The nanoparticles’ volume fractions at the surface of the sheet are considered to be adjusted passively. The thermal conductivity and the dynamic viscosity of the nanofluid are considered as functions of the local volume fraction of the nanoparticles. A non-dimensional parameter, heat transfer enhancement ratio, is introduced, which shows the alteration of the thermal convective coefficient of the nanofluid compared to the base fluid. The governing partial differential equations are reduced into a set of nonlinear ordinary differential equations using appropriate similarity transformations and then solved numerically using the fourth-order Runge–Kutta and Newton–Raphson methods along with the shooting technique. The effects of six non-dimensional parameters, namely, the Prandtl number of the base fluid Prbf, Lewis number Le, Brownian motion parameter Nb, thermophoresis parameter Nt, variable thermal conductivity parameter Nc and the variable viscosity parameter Nv, on the velocity, temperature, and concentration profiles as well as the reduced Nusselt number and the enhancement ratio are investigated. Finally, case studies for Al2O3 and Cu nanoparticles dispersed in water are performed. It is found that increases in the ambient values of the nanoparticles volume fraction cause decreases in both the dimensionless shear stress f″(0) and the reduced Nusselt number Nur. Furthermore, an augmentation of the ambient value of the volume fraction of nanoparticles results in an increase the heat transfer enhancement ratio hnf/hbf. Therefore, using nanoparticles produces heat transfer enhancement from the sheet.


2013 ◽  
Vol 24 (09) ◽  
pp. 1350060 ◽  
Author(s):  
M. NAZARI ◽  
M. H. KAYHANI ◽  
R. MOHEBBI

The main goal of the present study is to investigate the heat transfer enhancement in a channel partially filled with an anisotropic porous block (Porous Foam) using the lattice Boltzmann method (LBM). Combined pore level simulation of flow and heat transfer is performed for a 2D channel which is partially filled with square obstacles in both ordered and random arrangements by LBM which is not studied completely in the literature. The effect of the Reynolds number, different arrangements of obstacles, blockage ratio and porosity on the velocity and temperature profiles inside the porous region are studied. The local and averaged Nusselt numbers on the channel walls along with the respective confidence interval and comparison between results of regular and random arrangements are presented for the first time. For constant porosity and block size, the maximum value of averaged Nusselt number in the porous block is obtained in the case of random arrangement of obstacles. Also, by decreasing the porosity, the value of averaged Nusselt number is increased. Heat transfer to the working fluids increases significantly by increasing the blockage ratio. Several blockage ratios with different arrangements are checked to obtain a correlation for the Nusselt number.


2012 ◽  
Vol 135 (1) ◽  
Author(s):  
C. Neil Jordan ◽  
Lesley M. Wright

An alternative to ribs for internal heat transfer enhancement of gas turbine airfoils is dimpled depressions. Relative to ribs, dimples incur a reduced pressure drop, which can increase the overall thermal performance of the channel. This experimental investigation measures detailed Nusselt number ratio distributions obtained from an array of V-shaped dimples (δ/D = 0.30). Although the V-shaped dimple array is derived from a traditional hemispherical dimple array, the V-shaped dimples are arranged in an in-line pattern. The resulting spacing of the V-shaped dimples is 3.2D in both the streamwise and spanwise directions. A single wide wall of a rectangular channel (AR = 3:1) is lined with V-shaped dimples. The channel Reynolds number ranges from 10,000–40,000. Detailed Nusselt number ratios are obtained using both a transient liquid crystal technique and a newly developed transient temperature sensitive paint (TSP) technique. Therefore, the TSP technique is not only validated against a baseline geometry (smooth channel), but it is also validated against a more established technique. Measurements indicate that the proposed V-shaped dimple design is a promising alternative to traditional ribs or hemispherical dimples. At lower Reynolds numbers, the V-shaped dimples display heat transfer and friction behavior similar to traditional dimples. However, as the Reynolds number increases to 30,000 and 40,000, secondary flows developed in the V-shaped concavities further enhance the heat transfer from the dimpled surface (similar to angled and V-shaped rib induced secondary flows). This additional enhancement is obtained with only a marginal increase in the pressure drop. Therefore, as the Reynolds number within the channel increases, the thermal performance also increases. While this trend has been confirmed with both the transient TSP and liquid crystal techniques, TSP is shown to have limited capabilities when acquiring highly resolved detailed heat transfer coefficient distributions.


Sign in / Sign up

Export Citation Format

Share Document