Eliminating Static Pressure Distortion by a Large Cut Back Tongue Volute

Author(s):  
C. Xu ◽  
R. S. Amano

This paper presents a physical solution by eliminating static pressure distortions of impeller exit due to a volute in a centrifugal compressor. The numerical and experimental studies on the circumferential distortion flow characteristics inside the stationary frame of a high-pressure ratio compressor with a large cut back tongue volute. The detailed flow structures and pressure distortions development inside the stationary components are discussed. The numerical results were demonstrated to be in good agreement with the experiments. The volute and diffuser interactions at design and off-design conditions were found to be much smaller for the large cut back volute in comparison with the reported from literature. The study indicated that the large cut back tongue volute design not only benefits the compressor performance but also reduces the impeller exit static pressure non-uniformity caused by discharge volute.

1987 ◽  
Vol 109 (1) ◽  
pp. 55-61 ◽  
Author(s):  
Y. Senoo ◽  
M. Ishida

The authors’ theory on the tip-clearance loss of centrifugal impellers is modified to include the variation of slip coefficient of the impeller due to the tip clearance, by deriving a rational relationship between two empirical parameters in the theory. In order to compare experimental data in the literature with prediction, examination was made regarding accuracy of available data and the way to select corresponding flow rates of a compressor with different values of tip clearance. Good agreement between data and prediction was observed. These examples demonstrate the following tendency regarding effects of various parameters on the tip clearance loss. Efficiency drop due to the tip clearance of high-pressure-ratio compressors is less than that of low-pressure-ratio compressors if the tip clearance ratio at the impeller exit is equal. The magnitude of clearance loss becomes smaller as the flow rate is reduced and also at a reduced shaft speed in cases of high-pressure-ratio compressors. The equations in the theory clearly show these tendencies.


Author(s):  
Mingyang Yang ◽  
Ricardo Martinez-Botas ◽  
Yangjun Zhang ◽  
Xinqian Zheng ◽  
Takahiro Bamba ◽  
...  

Large feasible operation range is a challenge for high pressure ratio centrifugal compressor of turbocharger in vehicle engine. Self-Recycling-Casing-Treatment (SRCT) is a widely used flow control method to enlarge the range for this kind of compressor. This paper investigates the influence of symmetrical/asymmetrical SRCT (ASRCT) on the stability of a high pressure ratio centrifugal compressor by experimental testing and numerical simulation. Firstly, the performance of the compressor with/without SRCT is tested is measured investigate the influence of flow distortion on the stability of compressor as well as the numerical method validation. Then detailed flow field investigation is conducted by experimental measurement and the numerical method to unveil the reasons for stability enhancement by symmetrical/asymmetrical SRCT. Results show that static pressure distortion at impeller outlet caused by the volute can make passages be confronted with flow distortion less stable than others because of their larger positive slope of T-S pressure ratio performance at small flow rate. SRCT can depress the flow distortion and reduce the slope by non-uniform recycling flow rate at impeller inlet. Moreover, ASRCT can redistribute the recycling flow in circumferential direction according to the asymmetric geometries. When the largest recycling flow rate is imposed on the passage near the distorted static pressure, the slope will be the most effectively reduced. Therefore, the stability is effectively enhanced by the optimized recycling flow device.


Author(s):  
Cheng Zhu ◽  
Weilin Zhuge ◽  
Yangjun Zhang

Radial inflow turbines which are an important component of a turbocharger consist essentially of a volute, a rotor and a diffuser. Vaneless volute turbines, which have reasonable performance and low cost, are the most widely used in turbochargers for automotive engines. In recent years the growing necessity of increasing specific output power of turbochargers has encouraged the design of high pressure ratio turbine stage. Two stage turbines, which can achieve the high pressure ratio require, are not suitable to for these applications due to volume and weight increases. The common design trend is thus to use single stage high pressure ratio radial transonic turbine. This paper describes numerical investigations of the flow fields in a radial inflow transonic turbine whose design pressure ratio is 4. The S-A turbulence model and Jameson’s center scheme have been applied in order to get good viscous resolution, accuracy and computing efficiency. Limiting streamlines on the wall surface as well as different flow characteristics, such as entropy generation of the cross sections, were evaluated, and detailed endwall flow and secondary flow structure were analyzed. The development of different vortex, especially the tip leakage vortex, vortex caused by the shock wave, passage vortex and horseshoe vortex were discussed. The results have shown that there is a great secondary flow feature and complicated vortex system in the high pressure ratio radial inflow transonic turbine.


Author(s):  
Xinqian Zheng ◽  
Yangjun Zhang ◽  
Mingyang Yang ◽  
Takahiro Bamba ◽  
Hideaki Tamaki

This is the Part II of a two-part paper involving the development of asymmetric flow control method to widen the operating range of a turbocharger centrifugal compressor with high-pressure-ratio. Non-axisymmetric Self Recirculation Casing Treatment (SRCT) as an instance of asymmetric flow control method is presented. Experimental and numerical methods were used to investigate the impact of non-axisymmetric SRCT on surge point of the centrifugal compressor. Firstly, the influence of the geometry of a symmetric SRCT on the compressor performance was studied by means of numerical simulation. The key parameter of the SRCT was found to be the distance from the main blade leading edge to the rear groove (Sr). Next, several arrangements of a non-axisymmetric SRCT were designed, based on flow analysis presented in Part I. Then, a series of experiments was carried out to analyze the influence of non-axisymmetric SRCT on the compressor performance. Results show that the non-axisymmetry SRCT has certain influence on performance and has a larger potential for stability improvement than the traditional symmetric SRCT. For the investigated SRCT, the surge flow rate of the compressor with the non-axisymmetric SRCT is about 10% lower than that of the compressor with symmetric SRCT. The largest surge margin (smallest surge flow rate) can be obtained when the phase of the largest Sr is coincident with the phase of the minimum static pressure in the vicinity of the leading edge of the splitter blades.


2012 ◽  
Vol 135 (2) ◽  
Author(s):  
Xinqian Zheng ◽  
Yangjun Zhang ◽  
Mingyang Yang ◽  
Takahiro Bamba ◽  
Hideaki Tamaki

This is part II of a two-part paper involving the development of an asymmetrical flow control method to widen the operating range of a turbocharger centrifugal compressor with high-pressure ratio. A nonaxisymmetrical self-recirculation casing treatment (SRCT) as an instance of asymmetrical flow control method is presented. Experimental and numerical methods were used to investigate the impact of nonaxisymmetrical SRCT on the surge point of the centrifugal compressor. First, the influence of the geometry of a symmetric SRCT on the compressor performance was studied by means of numerical simulation. The key parameter of the SRCT was found to be the distance from the main blade leading edge to the rear groove (Sr). Next, several arrangements of a nonaxisymmetrical SRCT were designed, based on flow analysis presented in part I. Then, a series of experiments were carried out to analyze the influence of nonaxisymmetrical SRCT on the compressor performance. Results show that the nonaxisymmetrical SRCT has a certain influence on the performance and has a larger potential for stability improvement than the traditional symmetric SRCT. For the investigated SRCT, the surge flow rate of the compressor with the nonaxisymmetrical SRCTs is about 10% lower than that of the compressor with symmetric SRCT. The largest surge margin (smallest surge flow rate) can be obtained when the phase of the largest Sr is coincident with the phase of the minimum static pressure in the vicinity of the leading edge of the splitter blades.


2012 ◽  
Vol 135 (2) ◽  
Author(s):  
Mingyang Yang ◽  
Xinqian Zheng ◽  
Yangjun Zhang ◽  
Takahiro Bamba ◽  
Hideaki Tamaki ◽  
...  

This is Part I of a two-part paper documenting the development of a novel asymmetric flow control method to improve the stability of a high-pressure-ratio turbocharger centrifugal compressor. Part I focuses on the nonaxisymmetrical flow in a centrifugal compressor induced by the nonaxisymmetrical geometry of the volute while Part II describes the development of an asymmetric flow control method to avoid the stall on the basis of the characteristic of nonaxisymmetrical flow. To understand the asymmetries, experimental measurements and corresponding numerical simulation were carried out. The static pressure was measured by probes at different circumferential and stream-wise positions to gain insights about the asymmetries. The experimental results show that there is an evident nonaxisymmetrical flow pattern throughout the compressor due to the asymmetric geometry of the overhung volute. The static pressure field in the diffuser is distorted at approximately 90 deg in the rotational direction of the volute tongue throughout the diffuser. The magnitude of this distortion slightly varies with the rotational speed. The magnitude of the static pressure distortion in the impeller is a function of the rotational speed. There is a significant phase shift between the static pressure distributions at the leading edge of the splitter blades and the impeller outlet. The numerical steady state simulation neglects the aforementioned unsteady effects found in the experiments and cannot predict the phase shift, however, a detailed asymmetric flow field structure is obviously obtained.


1980 ◽  
Vol 102 (4) ◽  
pp. 762-769 ◽  
Author(s):  
B. F. J. Cossar ◽  
W. C. Moffatt ◽  
R. E. Peacock

Rotating stall in axial compressors consists of regions or cells of retarded flow moving around the annulus relative to the blades. Planar symmetry is destroyed, resulting in stalled blades in part of the annulus and unstalled blades in the remainder. The stall cell moves in the direction opposite to the rotor, relative to the blades, but since the relative speed of propagation is usually less than the rotor speed, the cell is seen to move in the same direction as the rotor from an absolute reference frame. The presence of the stall cells results in a deterioration of compressor performance since the maximum pressure ratio is not achieved in regions of retarded flow. Furthermore, since this self-induced distortion is periodic, the forced frequencies generated may coincide with the natural harmonics of the blading, tending to cause structural damage. This paper describes a series of experiments in which a single-stage, lightly loaded compressor operated under stall-free conditions and with rotating stall, both with uniform inlet flow and with distortions generated by an upstream screen of uniform porosity. Not only was the overall compressor performance determined in the traditional manner, but the distribution of static pressure over the rotor suction and pressure surfaces was measured with high response instrumentation. The rotor pressure profiles measured in both undistorted and distorted flow are presented for operation before and after the onset of rotating stall and the latter are compared with the steady flow results. It is observed that two distinctly different types of rotating stall exist depending upon whether or not an inlet flow distortion is present. These cells differ not only in macroscopic properties—rotational speed, circumferential extent, mass-averaged flow conditions, etc.—but also in detailed flow characteristics as evidenced by the rotor blade static pressure distributions. It is further observed that not all inlet distortion geometries lead to the development of rotating stall.


Author(s):  
Mingyang Yang ◽  
Xinqian Zheng ◽  
Yangjun Zhang ◽  
Takahiro Bamba ◽  
Hideaki Tamaki ◽  
...  

This is the Part I of a two-part paper documenting the development of a novel asymmetric flow control method to improve the stability of a high-pressure-ratio turbocharger centrifugal compressor. Part I focuses on the non-axisymmetric flow in a centrifugal compressor induced by the non-axisymmetric geometry of the volute while Part II describes the development of asymmetric flow control method to avoid the stall on the basis of the characteristic of non-axisymmetric flow. To understand the asymmetries, experimental measurements and corresponding numerical simulation were carried out. The static pressure was measured by probes at different circumferential and stream-wise positions to gain insights about the asymmetries. The experiment results show that there is an evident non-axisymmetric flow pattern throughout the compressor due to the asymmetric geometry of overhung volute. The static pressure field in the diffuser is distorted at approximately 90° in rotational direction of the volute tongue throughout the diffuser. The magnitude of this distortion varies slightly with the rotational speeds. The magnitude of the static pressure distortion in the impeller is a function of the rotational speed. There is a significant phase shift between the static pressure distributions at the leading edge of the splitter blades and the impeller outlet. The numerical steady state simulation neglects the mentioned unsteady effects found in the experiments and can not predict the phase shift, but a detailed asymmetric flow field structure are obviously obtained.


Author(s):  
JongSik Oh ◽  
Charles W. Buckley ◽  
Giri L. Agrawal

As the second part, following the authors’ previous study, the influence of the LSD (Low Solidity Diffuser) vane stagger on high-pressure ratio centrifugal compressor performance is numerically investigated with all the other design parameters fixed, while vane solidities are in the range from 0.70 to 0.85. Vane stagger is varied for 6 cases from 8.55 deg to 22.37 deg with the NACA65-(4A10)06 airfoil profile, and the Stage interface scheme is applied for an interaction treatment. As the vane stagger increases, changing from 10.55 deg to 19.58 deg, the compressor overall performance is generally improved, but two extreme cases of vane stagger of 8.55 deg and 22.37 deg provide poor performance. Vane stagger of 19.58 deg shows the highest efficiency and pressure rise near design flow, while vane stagger of 13.76 deg has the largest operating range with acceptable performance of efficiency and pressure ratio.


Author(s):  
Li Chen ◽  
Weilin Zhuge ◽  
Yangjun Zhang ◽  
Shuyong Zhang ◽  
Jizhong Zhang

A numerical investigation into aerodynamic features of the mixed flow turbine used in a high pressure ratio turbocharger was conducted. The S-A turbulence model and Jameson’s center scheme have been applied in order to get good viscous resolution, accuracy and computing efficiency. Limiting streamlines on the wall surface as well as different flow characteristics, such as entropy generation of the cross sections, were evaluated, while detailed endwall flow and secondary flow structure were analyzed. The development of different vortex, especially the tip leakage vortex, passage vortex and horseshoe vortex were discussed. The results have shown that there is a great secondary flow feature and complicated vortex system in the mixed flow turbine.


Sign in / Sign up

Export Citation Format

Share Document