Lean Blowout Limits and NOx Emissions of Turbulent, Lean Premixed, Hydrogen-Enriched Methane/Air Flames at High Pressure

Author(s):  
P. Griebel ◽  
E. Boschek ◽  
P. Jansohn

Flame stability is a crucial issue in low NOx combustion systems operating at extremely lean conditions. Hydrogen enrichment seems to be a promising option to extend lean blowout limits of natural gas combustion. This experimental study addresses flame stability enhancement and NOx reduction in turbulent, high-pressure, lean premixed methane/air flames in a generic combustor, capable of a wide range of operating conditions. Lean blowout limits (LBO) and NOx emissions are presented for pressures up to 14 bars, bulk velocities in the range of 32–80 m/s, two different preheating temperatures (673 K, 773 K), and a range of fuel mixtures from pure methane to 20% H2/80% CH4 by volume. The influence of turbulence on LBO limits is discussed, too. In addition to the investigation of perfectly premixed H2-enriched flames, LBO and NOx are also discussed for hydrogen piloting. Experiments have revealed that a mixture of 20% hydrogen and 80% methane, by volume, can typically extend the lean blowout limit by roughly 10% compared to pure methane. The flame temperature at LBO is approximately 60 K lower resulting in the reduction of NOx concentration by ≈ 35% (0.5 → 0.3 ppm/15% O2).

2006 ◽  
Vol 129 (2) ◽  
pp. 404-410 ◽  
Author(s):  
P. Griebel ◽  
E. Boschek ◽  
P. Jansohn

Flame stability is a crucial issue in low NOx combustion systems operating at extremely lean conditions. Hydrogen enrichment seems to be a promising option to extend lean blowout limits (LBO) of natural gas combustion. This experimental study addresses flame stability enhancement and NOx reduction in turbulent, high-pressure, lean premixed methane/air flames in a generic combustor capable of a wide range of operating conditions. Lean blowout limits and NOx emissions are presented for pressures up to 14bar, bulk velocities in the range of 32–80m∕s, two different preheating temperatures (673K, 773K), and a range of fuel mixtures from pure methane to 20% H2∕80%CH4 by volume. The influence of turbulence on LBO limits is also discussed. In addition to the investigation of perfectly premixed H2-enriched flames, LBO and NOx are also discussed for hydrogen piloting. Experiments have revealed that a mixture of 20% hydrogen and 80% methane, by volume, can typically extend the lean blowout limit by ∼10% compared to pure methane. The flame temperature at LBO is ∼60K lower resulting in the reduction of NOx concentration by ≈35%(0.5→0.3ppm∕15%O2).


2021 ◽  
Author(s):  
Fujun Sun ◽  
Jianqin Suo ◽  
Zhenxia Liu

Abstract Based on the development trend of incorporating fuel holes into swirler-vanes and the advantages of wide operating conditions as well as low NOx emissions of LSI, this paper proposes an original lean premixed LSI with a convergent outlet. The influence of key structures on flowfields and fuel/air premixing uniformities of LSI is investigated by the combination of laser diagnostic experiments and numerical simulations. The flowfields of LSI shows that the main recirculation zone is detached from the convergent outlet and its axial dimensions are smaller than that of HSI, which can decrease the residence time of high-temperature gas to reduce NOx emissions. The fuel/air premixing characteristics show that the positions and diameters of fuel holes affect fuel/air premixing by changing the penetration depth of fuel. And when the penetration depth is moderate, it can give full play to the role of swirling air in enhancing premixing of fuel and air. In addition, the increase of the length of the premixing section can improve the uniformity of fuel/ar premixing, but it can also weaken the swirl intensity and increase the residence time of the combustible mixture within the LSI, which can affect flame stability and increase the risk of auto-ignition. Therefore, the design and selection of LSI structural parameters should comprehensively consider the requirements of fuel/air mixing uniformity, flame stability and avoiding the risk of auto-ignition. The results can provide the technical basis for LSI design and application in aero-derivative and land-based gas turbine combustors.


Author(s):  
J. C. Barnes ◽  
A. M. Mellor

Lean premixed combustor manufacturers require premixer concepts that provide homogeneity (mixedness) of the fuel which burns in the main flame. Ideally premixer evaluation would be conducted under realistic combustor operating conditions. However, current techniques typically are limited to cold—flow, low pressure (<14 atm) conditions or comparison of measured NOx emissions with others obtained in premixed systems. Thus, a simple, consistent method for quantifying unmixedness in lean premixed combustors operating at high pressure, fired operating conditions is proposed here, using the characteristic time model developed in the companion paper.


Author(s):  
Timo Buschhagen ◽  
Rohan Gejji ◽  
John Philo ◽  
Lucky Tran ◽  
J. Enrique Portillo Bilbao ◽  
...  

An experimental investigation of self-excited combustion instabilities in a high pressure, single-element, lean, premixed, natural gas dump-combustor is presented in this paper. The combustor is designed for optical access and is instrumented with high frequency pressure transducers at multiple axial locations. A parametric survey of operating conditions including inlet air temperature and equivalence ratio has been performed, which presents a wide range of peak to peak pressure fluctuations (p′) of the mean chamber pressure (pc). Two cases, Flame A and B with p′ /pc = 28% and p′/pc = 15% respectively, both presenting self-excited instabilities at the fundamental longitudinal (1L) mode of the combustion chamber, are discussed to study the coupling mechanism between flame-vortex interactions and the acoustic field in the chamber. OH*-chemiluminescence is used to obtain a map of global heat release distribution in the combustor. Phase conditioned analysis and Dynamic Mode Decomposition (DMD) analysis is performed, to highlight the contrasting mechanisms that lead to the two distinct instability regimes. Flame interactions with shear layer vortex structures just downstream of the dump plane during the compression phase of the acoustic cycle are found to augment the instability amplitude. Flame A engages strongly in this coupling, whereas Flame B is less affected and establishes a lower amplitude limit cycle.


Author(s):  
Jeffrey A. Lovett ◽  
Nesim Abuaf

An experimental study was conducted to determine the NOx emissions and flame stability associated with various flameholders used to support lean-premixed combustion of natural gas at gas turbine conditions. Data were obtained for velocities of 6 to 24 m/s, initial temperatures of 533 to 650 K, and pressures of 3.4 to 13.6 atm. Bluff-body, perforated-plate, and swirl-stabilized flameholders were tested and compared. The results confirm that NOx emissions at ultra-lean conditions scale with the flame temperature and are essentially independent of flameholder geometry for typical combustor residence times. The stability behavior, however, was strongly affected by flameholder type, illustrating the influence of fluid mechanics on flame stability. The flame stability was related also to the dynamics produced by combustion instability. A swirl-stabilized flameholder demonstrated the best stability characteristics at the expense of flameholder pressure drop.


Author(s):  
Timo Buschhagen ◽  
Rohan Gejji ◽  
John Philo ◽  
Lucky Tran ◽  
J. Enrique Portillo Bilbao ◽  
...  

Self-excited combustion instabilities in a high pressure, single-element, lean, premixed, natural gas (NG) dump-combustor are investigated. The combustor is designed for optical access and instrumented with high frequency pressure transducers at multiple axial locations. A parametric survey of operating conditions including inlet air temperature and equivalence ratio has been performed, resulting in a wide range of pressure fluctuation amplitudes (p′) of the mean chamber pressure (pCH). Two representative cases, flames A and B with p′/pCH=23% and p′/pCH=12%, respectively, both presenting self-excited instabilities at the fundamental longitudinal (1L) mode of the combustion chamber, are discussed to study the coupling mechanism between flame-vortex interactions and the acoustic field in the chamber. 10 kHz OH*-chemiluminescence imaging was performed to obtain a map of the global heat release distribution. Phase conditioned and Rayleigh index analysis as well as dynamic mode decomposition (DMD) is performed to highlight the contrasting mechanisms that lead to the two distinct instability regimes. Flame interactions with shear layer vortex structures downstream of the backward-facing step of the combustion chamber are found to augment the instability magnitude. Flame A engages strongly in this coupling, whereas flame B is less affected and establishes a lower amplitude limit cycle.


Author(s):  
Siddhartha Gadiraju ◽  
Suhyeon Park ◽  
Prashant Singh ◽  
Jaideep Pandit ◽  
Srinath V. Ekkad ◽  
...  

This work is motivated by an interest in understanding the fuel interchangeability of a fuel nozzle to operate under extreme lean operating conditions. A lean premixed, swirl-stabilized fuel nozzle designed with central pilot hub was used to test various fuel blends for combustion characteristics. Current gas turbine combustion technology primarily focuses on burning natural gas for industrial systems. However, interest in utilizing additional options due to environmental regulations as well as concerns about energy security have motivated interest in using fuel gases that have blends of Methane, Propane, H2, CO, CO2, and N2. For example, fuel blends of 35%/60% to 55%/35% of CH4/CO2 are typically seen in Landfill gases. Syngas fuels are typically composed primarily of H2, CO, and N2. CH4/N2 fuel blend mixtures can be derived from biomass gasification. Stringent emission requirements for gas turbines stipulate operating at extreme lean conditions, which can reduce NOx emissions. However, lean operating conditions pose the problem of potential blowout resulting in loss of performance and downtime. Therefore, it is important to understand the Lean Blowout (LBO) limits and involved mechanisms that lead to a blowout. While a significant amount of research has been performed to understand lean blowout limits and mechanisms for natural gas, research on LBO limits and mechanisms for fuel blends has only been concentrated on fuel blends of CH4 and H2 such as syngas. This paper studies the lean blowout limits with fuel blends CH4-C3H8, CH4-CO2, and CH4-N2 and also their effect on the stability limits as the pilot fuel percentage was varied. Experimental results demonstrate that the addition of propane, nitrogen and carbon dioxide has minimal effect on the adiabatic flame temperature when the flame becomes unstable under lean operating conditions. On the other hand, the addition of diluent gas showed a potential blowout at higher adiabatic temperatures.


Author(s):  
Shigeru Hayashi ◽  
Hideshi Yamada ◽  
Kazuo Shimodaira

The development of a variable geometry lean-premixed combustor is in progress at NAL. Engine testing has been cooducted by using a natural gas-fueled 210-kW gas turbine to demonstrate the capability of ultra-low NOx emissions over a wide range of eogine operation. This paper describes the effort of engine testing of the combustor to achieve NOx emissions of the 10-ppm level. Fuel was staged to the non-premixed pilot and premixed main burners. A butterfly valve air splitting system was employed to maintain both low NOx emissions and high efficieocy over a wide operating range of the engine. The engioe was operated in the lean-premixed, low NOx emissions mode from idle to full power. Over the whole operating conditions from idle to full power, NOx emissions were reduced to levels less than 25 ppm (15% O2 dry). The NOx emissions level for a nearly constant combustion efficiency decreased with increasing power or turbine inlet temperature. At operating conditions of 90% to full power, NOx emissions levels of 12 to 8 ppm (15% O2 dry) were measured with combustion efficiencies of 99.7 to 99.1%.


Energy ◽  
2019 ◽  
Vol 169 ◽  
pp. 1202-1213 ◽  
Author(s):  
Banglin Deng ◽  
Qing Li ◽  
Yangyang Chen ◽  
Meng Li ◽  
Aodong Liu ◽  
...  

Author(s):  
Brian Hollon ◽  
Erlendur Steinthorsson ◽  
Adel Mansour ◽  
Vincent McDonell ◽  
Howard Lee

This paper discusses the development and testing of a full-scale micro-mixing lean-premix injector for hydrogen and syngas fuels that demonstrated ultra-low emissions and stable operation without flashback for high-hydrogen fuels at representative full-scale operating conditions. The injector was fabricated using Macrolamination technology, which is a process by which injectors are manufactured from bonded layers. The injector utilizes sixteen micro-mixing cups for effective and rapid mixing of fuel and air in a compact package. The full scale injector is rated at 1.3 MWth when operating on natural gas at 12.4 bar (180 psi) combustor pressure. The injector operated without flash back on fuel mixtures ranging from 100% natural gas to 100% hydrogen and emissions were shown to be insensitive to operating pressure. Ultra-low NOx emissions of 3 ppm were achieved at a flame temperature of 1750 K (2690 °F) using a fuel mixture containing 50% hydrogen and 50% natural gas by volume with 40% nitrogen dilution added to the fuel stream. NOx emissions of 1.5 ppm were demonstrated at a flame temperature over 1680 K (2564 °F) using the same fuel mixture with only 10% nitrogen dilution, and NOx emissions of 3.5 ppm were demonstrated at a flame temperature of 1730 K (2650 °F) with only 10% carbon dioxide dilution. Finally, using 100% hydrogen with 30% carbon dioxide dilution, 3.6 ppm NOx emissions were demonstrated at a flame temperature over 1600 K (2420 °F). Superior operability was achieved with the injector operating at temperatures below 1470 K (2186 °F) on a fuel mixture containing 87% hydrogen and 13% natural gas. The tests validated the micro-mixing fuel injector technology and the injectors show great promise for use in future gas turbine engines operating on hydrogen, syngas or other fuel mixtures of various compositions.


Sign in / Sign up

Export Citation Format

Share Document