Prediction of Engine Performance Under Compressor Inlet Flow Distortion Using Streamline Curvature

Author(s):  
Vassilios Pachidis ◽  
Pericles Pilidis ◽  
Ioannis Templalexis ◽  
Theodosios Alexander ◽  
Petros Kotsiopoulos

Traditionally, engine performance has been simulated based on non-dimensional maps for compressors and turbines. Component characteristic maps assume by default a given state of inlet conditions which can not be easily altered in order to simulate two-dimensional or three-dimensional flow phenomena. Inlet flow distortion, for example, is usually simulated by applying empirical correction factors and modifiers to default component characteristics, alternatively, the parallel compressor theory may be applied. The accuracy of the above methods has been rather questionable since they are unable to capture in sufficient fidelity component-level, complex physical processes and analyze them in the context of the whole engine performance. The technique described in this paper integrates a zero-dimensional (non-dimensional) gas turbine modeling and performance simulation system and a two-dimensional, streamline curvature compressor software. The two-dimensional compressor software can fully define the characteristics of a compressor at several operating condition and is subsequently used in the zero-dimensional cycle analysis to provide a more accurate, physics-based estimate of compressor performance under clean and distorted inlet conditions, replacing the default compressor maps. The high-fidelity component communicates with the lower fidelity cycle via a fully automatic and iterative process for the determination of the correct operating point. This study discusses in detail the development, validation and integration of the two-dimensional, streamline curvature compressor software and presents the various loss models used in the code. It also discusses the relative changes in the performance of a two-stage, experimental compressor with different types of radial pressure distortion obtained by running the two-dimensional streamline curvature compressor software independently. Moreover, the performance of a notional engine model, utilizing the coupled, two-dimensional compressor, under distorted conditions is discussed in detail and compared against the engine performance under clean conditions.

2006 ◽  
Vol 129 (1) ◽  
pp. 97-103 ◽  
Author(s):  
Vassilios Pachidis ◽  
Pericles Pilidis ◽  
Ioannis Templalexis ◽  
Theodosios Korakianitis ◽  
Petros Kotsiopoulos

Traditionally, engine performance has been simulated based on nondimensional maps for compressors and turbines. Component characteristic maps assume by default a given state of inlet conditions that cannot be easily altered in order to simulate two- or three-dimensional flow phenomena. Inlet flow distortion, for example, is usually simulated by applying empirical correction factors and modifiers to default component characteristics. Alternatively, the parallel compressor theory may be applied. The accuracy of the above methods has been rather questionable over the years since they are unable to capture in sufficient fidelity component-level, complex physical processes and analyze them in the context of the whole engine performance. The technique described in this paper integrates a zero-dimensional (nondimensional) gas turbine modelling and performance simulation system and a two-dimensional, streamline curvature compressor software. The two-dimensional compressor software can fully define the characteristics of any compressor at several operating conditions and is subsequently used in the zero-dimensional cycle analysis to provide a more accurate, physics-based estimate of compressor performance under clean and distorted inlet conditions, replacing the default compressor maps. The high-fidelity, two-dimensional compressor component communicates with the lower fidelity cycle via a fully automatic and iterative process for the determination of the correct operating point. This manuscript firstly gives a brief overview of the development, validation, and integration of the two-dimensional, streamline curvature compressor software with the low-fidelity cycle code. It also discusses the relative changes in the performance of a two-stage, experimental compressor with different types of radial pressure distortion obtained by running the two-dimensional streamline curvature compressor software independently. Moreover, the performance of a notional engine model, utilizing the coupled, two-dimensional compressor, under distorted conditions is discussed in detail and compared against the engine performance under clean conditions. In the cases examined, the analysis carried out by this study demonstrated relative changes in the simulated engine performance larger than 1%. This analysis proves the potential of the simulation strategy presented in this paper to investigate relevant physical processes occurring in an engine component in more detail, and to assess the effects of various isolated flow phenomena on overall engine performance in a timely and affordable manner. Moreover, in contrast to commercial computational fluid dynamics tools, this simulation strategy allows in-house empiricism and expertise to be incorporated in the flow-field calculations in the form of deviation and loss models.


Author(s):  
M. M. Al-Mudhafar ◽  
M. Ilyas ◽  
F. S. Bhinder

The results of an experimental study on the influence of severely distorted velocity profiles on the performance of a straight two-dimensional diffuser are reported. The data cover entry Mach numbers ranging from 0.1 to 0.6 and several inlet distortion levels. The pressure recovery progressively deteriorates as the inlet velocity is distorted.


Author(s):  
Joachim Kurzke

This paper describes how the fundamental effects of inlet flow distortion on the performance of gas turbines can be evaluated with any engine performance program that employs an integrated parallel compressor model. In this simulation method, both pressure and temperature distortions are quantified with coefficients, which relate the pressure (respectively temperature) in the spoiled sector to the value in the clean sector. In single spool compressor engines, the static pressure at the exit of the clean sector equals that of the distorted sector. This hypothesis does not hold true with multispool compressor engines because the short intercompressor ducts, which often contain struts or vanes, do not allow the mass flow transfer over the sector borders, which would be required for balancing the static pressures. The degree of aerodynamic coupling of compressors in series can be described in the performance simulation program by the simple coupling factor introduced in this paper. There are two fundamentally different reasons for the change in engine performance: First, there is the impact of the flow distortion on the component efficiencies and thus the thermodynamic cycle and second there are performance changes due to the actions of the control system. From the engine system simulation results, it becomes clear why inlet flow distortion has only a minor impact on the thermodynamic cycle if the comparison of the two operating conditions (with clean and distorted inlet flow) is made at the properly averaged engine inlet conditions. For each compressor, the parallel compressor theory yields two operating points in the map, one for the clean sector and one for the spoiled sector. The performance loss due to the distortion is small since the efficiency values in the two sectors are only a bit lower than the efficiency at a comparable operating point with clean inlet flow. However, the control system of the engine can react to the inlet flow distortion in such a way that the thrust delivered changes significantly. This is particularly true if a compressor bleed valve or a variable area nozzle is opened to counteract compressor stability problems. Especially, using recirculating bleed air for increasing the surge margin of a compressor affects the performance of the engine negatively. Two examples show clearly that the pros and cons of recirculating bleed can only be judged with a full system simulation; looking at the surge line improvement alone can be misleading.


Author(s):  
A. Naseri ◽  
M. Boroomand ◽  
A. M. Tousi ◽  
A. R. Alihosseini

This paper concerns investigating effect of inlet flow distortion on performance of a micro-jet engine. An experimental study has been carried out to determine how the steady state inlet total-pressure distortion affects the performance of a micro gas turbine engine. An inlet simulator is designed and developed to produce and measure distortion patterns at the engine inlet. An Air Jet Distortion Generator is used to produce non-uniform flow patterns and total pressure probes are implemented to measure steady state total pressure distribution at the engine face. A set of wind tunnel tests has been performed to confirm the fidelity of distortion generator and measuring devices. The engine got exposed to inlet flow with 60-degree, 120-degree, and 180-degree circumferential distortion patterns with different distortion intensities and the engine performance have been measured and compared with that of clean inlet flow. Results indicate that engine performance can be affected significantly facing with intense inlet distortions.


Author(s):  
Ioannis Templalexis ◽  
Alexios Alexiou ◽  
Vassilios Pachidis ◽  
Ioannis Roumeliotis ◽  
Nikolaos Aretakis

Coupling of high fidelity component calculations with overall engine performance simulations (zooming) can provide more accurate physics and geometry based estimates of component performance. Such a simulation strategy offers the ability to study complex phenomena and their effects on engine performance and enables component design changes to be studied at engine system level. Additionally, component interaction effects can be better captured. Overall, this approach can reduce the need for testing and the engine development time and cost. Different coupling methods and tools have been proposed and developed over the years ranging from integrating the results of the high fidelity code through conventional performance component maps to fully-integrated three-dimensional CFD models. The present paper deals with the direct integration of an in-house two-dimensional (through flow) streamline curvature code (SOCRATES) in a commercial engine performance simulation environment (PROOSIS) with the aim to establish the necessary coupling methodology that will allow future advanced studies to be performed (e.g. engine condition diagnosis, design optimization, mission analysis, distorted flow). A notional two-shaft turbofan model typical for light business jets and trainer aircraft is initially created using components with conventional map-defined performance. Next, a derivative model is produced where the fan component is replaced with one that integrates the high fidelity code. For both cases, an operating line is simulated at sea-level static take-off conditions and their performances are compared. Finally, the versatility of the approach is further demonstrated through a parametric study of various fan design parameters for a better thermodynamic matching with the driving turbine at design point operation.


Author(s):  
L. Gallar ◽  
I. Tzagarakis ◽  
V. Pachidis ◽  
R. Singh

After a shaft failure the compression system of a gas turbine is likely to surge due to the heavy vibrations induced on the engine after the breakage. Unlike at any other conditions of operation, compressor surge during a shaft over-speed event is regarded as desirable as it limits the air flow across the engine and hence the power available to accelerate the free turbine. It is for this reason that the proper prediction of the engine performance during a shaft over-speed event claims for an accurate modelling of the compressor operation at reverse flow conditions. The present study investigates the ability of the existent two dimensional algorithms to simulate the compressor performance in backflow conditions. Results for a three stage axial compressor at reverse flow were produced and compared against stage by stage experimental data published by Gamache. The research shows that due to the strong radial fluxes present over the blades, two dimensional approaches are inadequate to provide satisfactory results. Three dimensional effects and inaccuracies are accounted for by the introduction of a correction parameter that is a measure of the pressure loss across the blades. Such parameter is tailored for rotors and stators and enables the satisfactory agreement between calculations and experiments in a stage by stage basis. The paper concludes with the comparison of the numerical results with the experimental data supplied by Day on a four stage axial compressor.


Author(s):  
Abdelgadir M. Mahmoud ◽  
Mohd S. Leong

Turbine blades are always subjected to severe aerodynamic loading. The aerodynamic loading is uniform and Of harmonic nature. The harmonic nature depends on the rotor speed and number of nozzles (vanes counts). This harmonic loading is the main sources responsible for blade excitation. In some circumstances, the aerodynamic loading is not uniform and varies circumferentially. This paper discussed the effect of the non-uniform aerodynamic loading on the blade vibrational responses. The work involved the experimental study of forced response amplitude of model blades due to inlet flow distortion in the presence of airflow. This controlled inlet flow distortion therefore represents a nearly realistic environment involving rotating blades in the presence of airflow. A test rig was fabricated consisting of a rotating bladed disk assembly, an inlet flow section (where flow could be controlled or distorted in an incremental manner), flow conditioning module and an aerodynamic flow generator (air suction module with an intake fan) for investigations under laboratory conditions. Tests were undertaken for a combination of different air-flow velocities and blade rotational speeds. The experimental results showed that when the blades were subjected to unsteady aerodynamic loading, the responses of the blades increased and new frequencies were excited. The magnitude of the responses and the responses that corresponding to these new excited frequencies increased with the increase in the airflow velocity. Moreover, as the flow velocity increased the number of the newly excited frequency increased.


Author(s):  
Ali Akturk ◽  
Cengiz Camcı

This paper describes a novel ducted fan inlet flow conditioning concept that will significantly improve the performance and controllability of ducted fan systems operating at high angle of attack. High angle of attack operation of ducted fans is very common in VTOL (vertical take off and landing) UAV systems. The new concept that will significantly reduce the inlet lip separation related performance penalties in the edgewise/forward flight zone is named DOUBLE DUCTED FAN (DDF). The current concept uses a secondary stationary duct system to control inlet lip separation related momentum deficit at the inlet of the fan rotor occurring at elevated edgewise flight velocities. The DDF is self-adjusting in a wide edgewise flight velocity range and its corrective aerodynamic effect becomes more pronounced with increasing flight velocity due to its inherent design properties. Most axial flow fans are designed for an axial inlet flow with zero or minimal inlet flow distortion. The DDF concept is proven to be an effective way of dealing with inlet flow distortions occurring near the lip section of any axial flow fan system, especially at high angle of attack. In this present paper, a conventional baseline duct without any lip separation control feature is compared to two different double ducted fans named DDF CASE-A and DDF CASE-B via 3D, viscous and turbulent flow computational analysis. Both hover and edgewise flight conditions are considered. Significant relative improvements from DDF CASE-A and DDF CASE-B are in the areas of vertical force (thrust) enhancement, nose-up pitching moment control and recovery of fan through-flow mass flow rate in a wide horizontal flight range.


2018 ◽  
pp. 249-267 ◽  
Author(s):  
Joachim Kurzke ◽  
Ian Halliwell

Sign in / Sign up

Export Citation Format

Share Document