Traction Characteristics of a Rolling Element Bearing Under Rapid Acceleration and Implications for Auxiliary Operation in Magnetic Bearing Systems

Author(s):  
Matthew O. T. Cole ◽  
Theeraphong Wongratanaphisan

The application of rolling element bearings for auxiliary operation in magnetic bearing systems is quite common, yet such operation is very different to that for which standard bearings are designed. During initial touchdown of a spinning rotor with an auxiliary bearing, rapid acceleration of the bearing inner race results in large inertial and friction forces acting on the rolling elements. Complex dynamic behavior of the bearing assembly and resulting traction forces are difficult to predict but, nonetheless, have important implications for both rotor dynamic behavior and thermo-elastic behavior of the bearing components. The aim of this work is to obtain an insight into bearing behavior by analyzing component interaction forces that would arise based on the assumption that the overall bearing traction torque is dependent only on instantaneous load, speed and acceleration. How such an analysis can be verified by experimental measurements of traction during rapid acceleration is discussed and some initial experimental results are presented. The implications for modeling and prediction of rotor-magnetic bearing system behavior during touchdown are also discussed.

2001 ◽  
Vol 124 (2) ◽  
pp. 406-413 ◽  
Author(s):  
M. O. T. Cole ◽  
P. S. Keogh ◽  
C. R. Burrows

The dynamic behavior of a rolling element bearing under auxiliary operation in rotor/magnetic bearing systems is analyzed. When contact with the rotor occurs, the inner race experiences high impact forces and rapid angular acceleration. A finite element model is used to account for flexibility of the inner race in series with non-linear ball stiffnesses arising from the ball-race contact zones. The dynamic conditions during rotor/inner race contact, including ball/race creep, are deduced from a non-linear matrix equation. The influences of bearing parameters are considered together with implications for energy dissipation in the bearing.


Author(s):  
April M. Free ◽  
George T. Flowers ◽  
Victor S. Trent

Abstract Auxiliary bearings are a critical feature of any magnetic bearing system. They protect the soft iron core of the magnetic bearing during an overload or failure. An auxiliary bearing typically consists of a rolling element bearing or bushing with a clearance gap between the rotor and the inner race of the support. The dynamics of such systems can be quite complex. It is desired to develop a rotordynamic model which describes the dynamic behavior of a flexible rotor system with magnetic bearings including auxiliary bearings. The model is based upon an experimental test facility. Some simulation studies are presented to illustrate the behavior of the model. In particular, the effects of introducing sideloading from the magnetic bearing when one coil fails is studied. These results are presented and discussed.


Author(s):  
H. Ming Chen ◽  
James Walton ◽  
Hooshang Heshmat

Active magnetic bearings (AMBs) while offering many unique design and operational opportunities for advanced rotor systems, require some form of backup or auxiliary bearing in the event of a component failure or the onset of high transient loads. A zero clearance auxiliary bearing (ZCAB) has recently been conceived and a prototype system tested. The ZCAB presented in this paper uses a series of interconnected rollers to surround a shaft. In the open position, a clearance exists between the ZCAB rollers and the shaft. When the shaft drops on the ZCAB due to either an AMB failure or transient shock, the rollers move circumferentially and radially inward to eliminate the clearance and re-center the shaft. Besides centering the shaft, the law shaft-to-ZCAB traction coefficient and composite support dynamic characteristics eliminate the possibility of backward whirl. This paper presents the design methodology used, results of an analytical design study, including time transient analysis, as well as preliminary feasibility prototype testing under simulated AMB failure and transient shock conditions. The test rotor was supported by a rolling element bearing at one end and an integrated magnetic bearing/ZCAB support system at the other end. Both rotor drop and shock tests were performed with this configuration. Experimental results under simulated AMB failure and transient shock conditions demonstrated successful operation of the ZCAB.


2018 ◽  
Vol 18 (5-6) ◽  
pp. 1527-1542 ◽  
Author(s):  
Francesco Larizza ◽  
Alireza Moazen-Ahmadi ◽  
Carl Q Howard ◽  
Steven Grainger

The change in the static stiffness of a bearing assembly is an important discriminator when determining the size of a defect in a rolling element bearing. In this article, the force–displacement relationships for defective bearings under various static radial loadings at various cage angular positions are analytically estimated and experimentally measured and analyzed. The study shows that the applied load has a significant effect on the static stiffness variations in defective rolling element bearings. The experimental measurements of the effect of the defect size on the varying stiffness of the bearing assembly, which has not been shown previously, provides valuable knowledge for developing methods to distinguish between defective bearings with defects that are smaller or larger than one angular ball spacing. The methods and results presented here contribute to the wider experimental investigation of the effects of loadings on the varying static stiffness of defective bearings and its effects on the measured vibration signatures. A large data set was obtained and has been made publicly available.


Author(s):  
N. S. Feng ◽  
E. J. Hahn

Non-linearity effects in rolling element bearings arise from two sources, viz. the Hertzian force deformation relationship and the presence of clearance between the rolling elements and the bearing races. Assuming that centrifugal effects may be neglected and that the presence of axial preload is appropriately reflected in a corresponding change in the radial clearance, this paper analyses a simple test rig to illustrate that non-linear phenomena such as synchronous multistable and nonsynchronous motions are possible in simple rigid and flexible rotor systems subjected to unbalance excitation. The equations of motion of the rotor bearing system were solved by transient analysis using fourth order Runge Kutta. Of particular interest is the effect of clearance, governed in practice by bearing specification and the amount of preload, on the vibration behaviour of rotors supported by ball bearings and on the bearing load. It is shown that in the presence of positive clearance, there exists an unbalance excitation range during which the bearing is momentarily not transmitting force owing to contact loss, resulting in rolling element raceway impact with potentially relatively high bearing forces; and indicating that for long bearing life, operation with positive clearance should be avoided in the presence of such unbalance loading. Once the unbalance excitation is high enough to avoid such contact loss, it is the bearings with zero or negative clearance which produce maximum bearing forces.


2002 ◽  
Vol 124 (3) ◽  
pp. 468-473 ◽  
Author(s):  
Har Prashad

The diagnosis and cause analysis of rolling-element bearing failure have been well studied and established in literature. Failure of bearings due to unforeseen causes were reported as: puncturing of bearings insulation; grease deterioration; grease pipe contacting the motor base frame; unshielded instrumentation cable; the bearing operating under the influence of magnetic flux, etc. These causes lead to the passage of electric current through the bearings of motors and alternators and deteriorate them in due course. But, bearing failure due to localized electrical current between track surfaces of races and rolling-elements has not been hitherto diagnosed and analyzed. This paper reports the cause of generation of localized current in presence of shaft voltage. Also, it brings out the developed theoretical model to determine the value of localized current density depending on dimensional parameters, shaft voltage, contact resistance, frequency of rotation of shaft and rolling-elements of a bearing. Furthermore, failure caused by flow of localized current has been experimentally investigated.


Author(s):  
H. Ming Chen

An analytical method for designing magnetic bearing controllers with no displacement sensors has been developed and laboratory tested. The method was applied to the design of a sensorless magnetic damper for replacing a rolling element bearing of a vertical rotor with a large unbalance. The synchronous vibration force transmitted to ground was predicted to be reduced by a factor of ten.


Author(s):  
A. Liew ◽  
N. S. Feng ◽  
E. J. Hahn

Non-linearity effects in rolling element bearings may arise from the Hertzian contact force deformation relationship, the presence of clearance between the rolling elements and the bearing races, and the bearing to housing clearance. Assuming zero bearing to housing clearance and ignoring rolling element centrifugal load effects, it has been shown in earlier work that Rotor Bearing Systems (RBSs) with deep groove ball bearings can give rise to non-linear behavior such as chaotic motion and jump. This paper extends the bearing model to include rolling element centrifugal load, angular contacts and axial dynamics. The effect of more sophisticated bearing models is illustrated in both a rigidly supported rigid RBS and a flexibly supported flexible RBS, the latter being a model of a test rig designed to simulate an aircraft mounted accessory drive unit. Results are presented on the effect of bearing preload on the unbalance response up to a speed of 18,000 rpm.


Author(s):  
P. H. Darji ◽  
D. P. Vakharia

Since being originally introduced, cylindrical rolling element bearings have been significantly improved, in terms of their performance and working life. A major objective has been to decrease the Hertz contact stresses at the roller–raceway interfaces, because these are the most heavily stressed areas in a bearing. It has been shown that bearing life is inversely proportional to the stress raised to the ninth power (even higher). Investigators have proposed that under large normal loads a hollow element with a sufficiently thin wall thickness will deflect appreciably more than a solid element of the same size. An improvement in load distribution and thus load capacity may be realized, as well as contact stress is also reduced considerably by using a bearing with hollow rolling elements. Since for hollow rolling element no method is available for the calculation of contact stresses and deformation. The contact stresses in hollow members are often calculated by using the same equations and procedures as for solid specimens. This approach seems to be incorrect. Recently, the Finite Element Analysis (FEA) has been successfully used to evaluate contact problems for the roller bearings. Investigations have been made for hollow rollers in pure normal loading. Different hollowness percentages ranging from 0% to 90% have been analysed in FEA software to find the optimum percentage hollowness which gives minimum stress and finally longest fatigue life.


Author(s):  
Michael M. Cui

Combined with the geometric features, the pressure differential and bearing motion define the gas flow through the rolling-element-bearing assembly of a centrifugal compressor. The gas flow field then affects the oil distribution and heat transfer characteristics of the assembly accordingly. Investigations of the refrigerant gas flow through the rolling element bearing assembly of a centrifugal compressor are presented. A series of cases are studied for different operating conditions. The analyses include the geometric details of the assembly, such as the shaft, races, cages, balls, oil feeding system, and surrounding components. Refrigerant R123 is used as the working fluid. Both detailed three-dimensional flow field features and integrated parameters are calculated. The interactions between bearing motion and the surrounding structures are characterized. The flow patterns inside the bearings are defined. These results help us gain an insight into the basic physics that governs the bearing internal mass and heat transfer. The data and techniques developed can be used to design and optimize bearing and oil supply systems for the improvement of lubrication and cooling efficiency.


Sign in / Sign up

Export Citation Format

Share Document