Development and Demonstration of Engine-Ready Surface-Stabilized Combustion System

Author(s):  
Leonel O. Arellano ◽  
Arun K. Bhattacharya ◽  
Kenneth O. Smith ◽  
Steven J. Greenberg ◽  
Neil K. McDougald

Alzeta Corporation has developed surface-stabilized fuel injectors for use in lean-premixed low-emissions combustion systems. These injectors use a patented technique to form interacting high-flow and low-flow flame zones immediately above a selectively-perforated porous metal surface. This allows stable operation at low reaction temperatures conducive for preventing high NOx formation. Solar Turbines and Alzeta had previously worked together to evaluate single-injector and full-scale proof-of-concept test hardware. This paper presents results of a combustion system developed for evaluation on an engine. The next-generation hardware has evolved to include a pilot to handle low engine speeds, and flow circuits have been adjusted to meet low-pressure drop requirements. Screening tests of the full-scale system have been completed at simulated engine conditions in a full-scale rig. Single-digit NOx and CO emissions have been achieved without encountering combustion-driven instabilities. The combustion system demonstrated adequate power turndown with the assistance of the pilot module, and studies to predict the service life of burners have been initiated.

Author(s):  
Steven J. Greenberg ◽  
Neil K. McDougald ◽  
Leonel O. Arellano

ALZETA Corporation has developed surface-stabilized fuel injectors for use with lean premixed combustors which provide extended turndown and ultra-low NOx emission performance. These injectors use a patented technique to form interacting high-flow and low-flow flame zones immediately above a selectively-perforated porous metal surface. This allows stable operation at low reaction temperatures. This technology has been given the product name nanoSTAR™. Previous work involved the development of nanoSTAR technology from the proof-of-concept stage to prototype testing. Rig testing of single injectors and of two injectors simulating a sector of an annular combustion liner have been completed for pressure ratios up to 17 and combustion air inlet temperatures up to 700 K (800°F). This paper presents results from the first ever full-scale demonstration of surface-stabilized fuel injectors. An annular combustion liner, fitted with twelve nanoSTAR injectors was successfully tested up to a pressure ratio of 12 and combustion air inlet temperature of 700 K (800°F). NOx emissions were 2 ppm with CO emissions of 3 ppm both corrected to 15% O2. The combustion system exhibited excellent temperature uniformity around the annular combustor outlet with a maximum pattern factor of 0.16 and engine-appropriate radial profiles.


Author(s):  
Christopher K. Weakley ◽  
Steven J. Greenberg ◽  
Robert M. Kendall ◽  
Neil K. McDougald ◽  
Leonel O. Arellano

ALZETA Corporation has developed surface-stabilized fuel injectors for use with lean premixed combustors which provide extended turndown and ultra-low NOx emission performance. These injectors use a patented technique to form interacting radiant and blue-flame zones immediately above a selectively-perforated porous metal surface. This allows stable operation at low reaction temperatures. This technology is a successful extension of ALZETA’s line of proven Pyromat™ SB metal fiber burners. A proof-of-concept injector in a full-pressure test rig at NETL in Morgantown, West Virginia achieved sub-3 ppm NOx emissions with concurrent single-digit CO emissions, both corrected to 15% O2. Operating conditions ranged between inlet pressures of 182.4 kPa (1.8 atm) and 1236.2 kPa (12.2 atm), inlet temperatures between 86° C (186° F) and 455° C (850° F) and calculated adiabatic flame temperatures between 1466° C (2670° F) and 1593° C (2900° F). Testing with prototype fuel injectors in test rigs at Solar Turbines last year yielded similar results. In May of 2001, a Solar Saturn 1 MW gas-turbine engine was operated to 95% load with a surface-stabilized injector. Programs are moving forward to adapt these injectors to the Solar Turbines Taurus 60 and Titan 130 engines. Engine tests are scheduled to begin in 2003.


Author(s):  
Steven J. Greenberg ◽  
Neil K. McDougald ◽  
Christopher K. Weakley ◽  
Robert M. Kendall ◽  
Leonel O. Arellano

ALZETA Corporation has developed surface-stabilized fuel injectors for use with lean premixed combustors which provide extended turndown and ultra-low NOx emission performance. These injectors use a patented technique to form interacting radiant and blue-flame zones immediately above a selectively-perforated porous metal surface. This allows stable operation at low reaction temperatures. A previous ASME paper (IJPGC2002-26088) described the development of this technology from the proof-of-concept stage to prototype testing. In 2002 development of these fuel injectors for the 5.5 MW turbine accelerated. Additional single-injector rig tests were performed which also demonstrated ultra-low emissions of NOX and CO at pressures up to 1.68 MPa (16.6 atm) and inlet temperatures up to 670 °K (750 °F). A pressurized multi injector ‘sector rig’ test was conducted in which two injectors were operated simultaneously in the same geometric configuration as that expected in the engine combustor liner. The multi-injector package was operated with various combinations of fired and unfired injectors, which resulted in low emissions performance and no adverse affects due to injector proximity. To date sub-3 ppm NOx emissions with sub-10 ppm CO emissions have been obtained over an operating range of 0.18 to 1.68 MPa (1.8 to 16.6 atm), inlet temperatures from 340 to 670 °K (186 to 750 °F), and adiabatic flame temperatures from 1740 to 1840 °K (2670 to 2850 °F). A full scale multi-injector engine simulation is scheduled for the beginning of 2003, with engine tests beginning later that year.


2005 ◽  
Vol 127 (2) ◽  
pp. 276-285 ◽  
Author(s):  
Steven J. Greenberg ◽  
Neil K. McDougald ◽  
Christopher K. Weakley ◽  
Robert M. Kendall ◽  
Leonel O. Arellano

ALZETA Corporation has developed surface-stabilized fuel injectors for use with lean premixed combustors which provide extended turndown and ultralow NOx emission performance. These injectors use a patented technique to form interacting radiant and blue-flame zones immediately above a selectively perforated porous metal surface. This allows stable operation at low reaction temperatures. A previous ASME paper (IJPGC2002-26088) described the development of this technology from the proof-of-concept stage to prototype testing. In 2002 development of these fuel injectors for the 5.5 MW turbine accelerated. Additional single-injector rig tests were performed which also demonstrated ultralow emissions of NOx and CO at pressures up to 1.68 MPa (16.6 atm) and inlet temperatures up to 670°K (750°F). A pressurized multi-injector “sector rig” test was conducted in which two injectors were operated simultaneously in the same geometric configuration as that expected in the engine combustor liner. The multi-injector package was operated with various combinations of fired and unfired injectors, which resulted in low emissions performance and no adverse affects due to injector proximity. To date sub-3 ppm NOx emissions with sub-10 ppm CO emissions have been obtained over an operating range of 0.18–1.68 MPa (1.8–16.6 atm), inlet temperatures from 340 to 670K (186–750°F), and adiabatic flame temperatures from 1740 to 1840K (2670–2850°F). A full scale multi-injector engine simulation is scheduled for the beginning of 2003, with engine tests beginning later that year.


Author(s):  
Jinjun Zhang ◽  
Jianlin Ding ◽  
Kang Xu ◽  
Huajun Fan

Flow risk of a hot waxy crude pipeline mainly comes from restart failure, i.e. oil gelation resulted from prolonged pipeline shutdown, and unstable operation at low flow rate. Once the unstable operation happens, the friction loss of the pipeline increases with decreasing flow rate and finally flow may cease if treated improperly. To avoid these flow risks, the pumping temperature of the crude is generally required to be kept above a minimum allowable temperature, and conventionally the pour point temperature is taken. This practice is effective but quite rough. Obviously, to control the inlet temperature of a heating station at the pour point temperature implies different safety margin for winter and summer operation. For large throughput hot oil pipelines, reduction of the heating temperature even by a little bit may save a great amount of fuel. Therefore, how to save fuel while ensuring safe operation has been a valuable topic for long time. On the other hand, many factors impacting the flow safety are stochastic and with uncertainty, so analysis without considering this feature can hardly yield convincible results, though this has been the common case for many years. In this paper, by taking the stochastic feature into account, a Stable Operation Index (SOI) and a Pipeline Restartability Index (PRI) were proposed to assess the flow safety of a pipeline concerning the low-flowrate stable operation and restartability after shutdown. Combining these two indexes, a Pipeline Flow Safety Index (PFSI) was adopted to assess the flow risks of hot waxy crude pipelines. On this basis a new approach to quantitatively determining the safe pumping temperature was developed and illustrated by a case study. Encouraging results show that this new approach has the potential to replace the simple rule of pour point as a guide to determining the safe pumping temperature of waxy crude pipelines.


Author(s):  
K. Smith ◽  
A. Fahme

The design and development testing of a full scale, low emissions, ceramic combustor for a 5500 HP industrial gas turbine are described. The combustor was developed under a joint program conducted by the U.S. DOE and Solar Turbines. The ceramic combustor is designed to replace the production Centaur 50S SoLoNOx burner which uses lean-premixed combustion to limit NOx and CO to 25 and 50 ppm, respectively. Both the ceramic and production combustors are annular in shape and employ twelve premixing, natural gas fuel injectors. The ceramic combustor design effort involved the integration of two CFCC cylinders (76.2 cm [30 in.] and 35.56 cm [14 in.] diameters) into the combustor primary zone. The ceramic combustor was evaluated at Solar in full scale test rigs and a test engine. Performance of the combustor was excellent with high combustion efficiency and extremely low NOx and CO emissions. The hot walls of the ceramic combustor played a significant role in reducing CO emissions. This suggests that liner cooling air injected through the metal production liner contributes to CO emissions by reaction quenching at the liner walls. It appears that ceramics can serve to improve combustion efficiency near the combustor lean limit which, in turn, would allow further reductions in NOx emissions. Approximately 50 hours of operation have been accumulated using the ceramic combustor. No significant deterioration in the CFCC liners has been observed. A 4000 hour field test of the combustion system is planned to begin in 1997 as a durability assessment.


Author(s):  
R. A. Rockow ◽  
L. M. Shaw

Safety fuels such as emulsified and gelled fuels have been studied over the past several years as one means for reducing the post-crash fire hazard associated with aircraft accidents. However, through the work described herein, only recently has a quantitative evaluation been made to characterize the safety performance of these fuels. The safety performance evaluation program described in this paper includes an initial series of screening tests designed to obtain the characteristics of safe fuels in the aircraft crash environment. The authenticity of the screening tests relative to the full-scale crash environment was evaluated through a second series of experiments designed to simulate a full-scale aircraft crash environment. A crashworthiness evaluation criterion was established in terms of an “ignition susceptibility parameter” to quantitize the relative safety performance of different fuels. The conclusions of this research clearly show that significant savings in lives and equipment can be realized if safe fuels which perform within the non-hazardous envelope of the ignition susceptibility parameter are operationally incorporated in present-day aircraft.


2007 ◽  
Vol 55 (8-9) ◽  
pp. 27-33 ◽  
Author(s):  
W.R. Abma ◽  
C.E. Schultz ◽  
J.W. Mulder ◽  
W.R.L. van der Star ◽  
M. Strous ◽  
...  

The start-up of the first full scale Anammox reactor is complete. The reactor shows stable operation, even at loading rates of 10 kg N/m3.d. This performance is the result of the formation of Anammox granules, which have a high density and settling velocities exceeding 100 m/h. With this performance, the Anammox granular sludge technology has been proven on full scale.


Author(s):  
Masafumi Sasaki ◽  
Hirotaka Kumakura ◽  
Daishi Suzuki ◽  
Katsuhiko Sugiyama ◽  
Youichirou Ohkubo

A low emission combustor for a 100kW ceramic gas turbine, which is intended to meet Japanese emission standards for gasoline passenger cars, has been designed and subjected to initial performance tests. A prevaporization-premixing combustion system was chosen as the most suitable system for the combustor. The detailed combustor design, including the use of ceramic components and fuel injectors, was pursued taking into account the allowable engine dimensions for vehicle installation. In the initial performance tests conducted at a combustor inlet temperature of 773K, a low NOx level was obtained that satisfied the steady state target at this temperature level.


2018 ◽  
Vol 13 (3) ◽  
pp. 589-593 ◽  
Author(s):  
T. Niwa ◽  
R. Yin ◽  
M. H. Oo ◽  
H. Noguchi ◽  
T. Watanabe ◽  
...  

Abstract Application of membrane technology for water reclamation has grown significantly in recent years due to reduced footprint size and more consistent product water quality. For a membrane bioreactor (MBR) system, it is critical for it to be robust to allow membrane systems to operate at higher flux without significant increase of trans-membrane pressure (TMP). A full-scale ceramic MBR system was installed at Changi Water Reclamation Plant (CWRP) as part of an MBR retrofit project to increase treatment capacity without expanding the plant's footprint. The nominal capacity of the ceramic MBR system is 15,000 m3/d. The system has been successfully operating since January 2017 with a net flux of 30–60 L/m2-hr (LMH). Stable operation was observed at nominal production capacity for more than 3 months. During that period, the TMP was stable in the range of 9–14 kPa for Tank A and 10–17 kPa for Tank B. Permeate turbidity was recorded in the range of 0.04–0.06 NTU for both Tank A and Tank B.


Sign in / Sign up

Export Citation Format

Share Document