Parametric Analysis of Thermal Energy Storage for Gas Turbine Inlet Air Cooling

Author(s):  
Gianmario L. Arnulfi ◽  
Giulio Croce ◽  
Martino Marini

Gas turbine efficiency and power output are strongly dependent on the inlet air condition. Thus, several authors proposed the use of different inlet air cooling systems. Such systems include, as examples, spraying water in the inflow air stream or air cooling through a chiller during GT operation. In the latter case, it is possible to operate the chiller at night time, taking advantage of the remarkable price gap between peak and off-peak hours. A parametric analysis of such a system is presented, focusing on the effect of price gap, chiller and storage design parameters and climatic conditions on the optimal sizing of the plant. Both the gas turbine performance changes, due to the different inlet conditions, and thermal losses related to the storage system are taken into account. The economic return of the system is evaluated through the year-round integral of gas turbine fuel consumption and chiller electricity requirements, for given scenarios of electricity price tag, ambient temperature and humidity profile. For different boundary conditions (market constraints and climate) the optimal configurations are identified and discussed.


Author(s):  
Sepehr Sanaye ◽  
Masoud Mostakhdemi ◽  
Hossein Babaie Toski

The gas turbine power output and efficiency decrease with increasing ambient temperature. Compressor inlet air cooling is one way to compensate these losses. In this paper thermoeconomic optimization of an ice (latent) thermal storage systems (TES) has been studied as a gas turbine inlet cooling system. The objective function included the capital and operational costs of the gas turbine and compression refrigeration system as well as corresponding cost due to system exergy destruction. The system design parameters were obtained using numerical search optimization technique.





2018 ◽  
Vol 70 ◽  
pp. 03012 ◽  
Author(s):  
Roman Radchenko ◽  
Andrii Radchenko ◽  
Serhiy Serbin ◽  
Serhiy Kantor ◽  
Bohdan Portnoi

Two-stage Gas turbine unite (GTU) inlet air cooling by absorption lithium-bromide chiller (ACh) to the temperature 15 °C and by refrigerant ejector chiller (ECh) to 10 °C through utilizing the turbine exhaust gas heat for changeable ambient air temperatures and corresponding heat loads on the air coolers for the south Ukraine climatic conditions is analysed. An excessive refrigeration capacity of combined absorption-ejector chiller (AECh) exceeding the current heat loads and generated at decreased heat loads on the air coolers at the inlet of GTU can be used for covering increased heat loads to reduce the refrigeration capacity of AECh. The GTU inlet air cooling system with an ambient air precooling booster stage and a base two-stage cooling air to the temperature 10 °C by AECh is proposed. The AECh excessive cooling capacity generated during decreased heat loads on the GTU inlet air coolers is conserved in the thermal accumulator and used for GTU inlet air precooling in a booster stage of air cooler during increased heat loads. There is AECh cooling capacity reduction by 50% due to the use of a booster stage for precooling GTU inlet ambient air at the expense of an excessive cooling capacity accumulated in the thermal storage.



2005 ◽  
Vol 2 (4) ◽  
pp. 268-273 ◽  
Author(s):  
Rainer Kurz

A thermodynamic model for a gas turbine-fuel cell hybrid is created and described in the paper. The effects of gas turbine design parameters such as compressor pressure ratio, compressor efficiency, turbine efficiency, and mass flow are considered. The model allows to simulate the effects of fuel cell design parameters such as operating temperature, pressure, fuel utilization, and current density on the cycle efficiency. This paper discusses, based on a parametric study, optimum design parameters for a hybrid gas turbine. Because it is desirable to use existing gas turbine designs for the hybrids, the requirements for this hybridization are considered. Based on performance data for a typical 1600hp industrial single shaft gas turbine, a model to predict the off-design performance is developed. In the paper, two complementary studies are performed: The first study attempts to determine the range of cycle parameters that will lead to a reasonable cycle efficiency. Next, an existing gas turbine, that fits into the previously established range of parameters, will be studied in more detail. Conclusions from this paper include the feasibility of using existing gas turbine designs for the proposed cycle.



2019 ◽  
pp. 4-8
Author(s):  
Андрій Миколайович Радченко ◽  
Микола Іванович Радченко ◽  
Ян Зонмін ◽  
Сергій Анатолійович Кантор ◽  
Богдан Сергійович Портной

The operation of gas turbine unites significantly depends on the ambient air temperature at the inlet, and the higher it is, the greater the specific fuel consumption is spent for the production of a unit capacity (mechanical/electrical energy), and, accordingly, the more harmful substances are removed to the atmosphere with exhaust gases. To reduce the negative impact of unproductive fuel consumption during the operation of gas turbine units at elevated ambient temperatures, the inlet air cooling is applied. The paper studies the ecological efficiency of gas turbine unite inlet air cooling, taking into account the variable climatic operation conditions for regions with different climatic conditions over a period of five years (2014-2018): temperate climate of Ukraine (on the example of cities Sumy and Ternopol) and the subtropical climate of the PRC (cities Beijing and Nanjing). The annual reduction in emissions of carbon dioxide CO2 and nitric oxide NOX was chosen as indicators for assessing the environmental effect of air cooling. It has been shown that deeper cooling gas turbine unite inlet air to 7...10 °C provides almost a half to two times greater reduction in specific fuel consumption, respectively, and harmful emissions compared with traditional cooling to 15 °C by the most widespread absorption lithium-bromide chillers, and for the temperate climate of Ukraine the relative effect is much greater than for the subtropical climatic conditions of the PRC. Reducing carbon dioxide CO2 over five years for the PRC climate when cooling air to 10 °C is approximately more than 500 t, and for Ukraine – more than 240 t, and NOX nitric oxide – about 3.5 t for China and 1.6 t for Ukraine, while with traditional cooling to 15 °C: more than 300 t for China, and for Ukraine about 120 t, and nitric oxide NOX – about 2 t for China and 0.7 t for Ukraine. Based on the results of a rough assessment of the environmental effect of cooling the ambient air at the inlet of gas turbine units, in the temperate climate of Ukraine, deep cooling of the air is especially advisable, which provides almost twice the effect compared with traditional cooling to 15 °C.



2020 ◽  
Author(s):  
A. Radchenko ◽  
N. Radchenko ◽  
A. Tsoy ◽  
B. Portnoi ◽  
S. Kantor


2005 ◽  
Vol 127 (1) ◽  
pp. 145-158 ◽  
Author(s):  
R. Bhargava ◽  
C. B. Meher-Homji

With deregulation in the power generation market and a need for flexibility in terms of power augmentation during the periods of high electricity demand, power plant operators all over the world are exploring means to augment power from both the existing and new gas turbines. An approach becoming increasingly popular is that of the high pressure inlet fogging. In this paper, the results of a comprehensive parametric analysis on the effects of inlet fogging on a wide range of existing gas turbines are presented. Both evaporative and overspray fogging conditions have been analyzed. The results show that the performance parameters indicative of inlet fogging effects have a definitive correlation with the key gas turbine design parameters. In addition, this study indicates that the aeroderivative gas turbines, in comparison to the heavy-duty industrial machines, have higher performance improvement due to inlet fogging effects. Plausible reasons for the observed trends are discussed. This paper represents the first systematic study on the effects of inlet fogging for a large number (a total of 67) of gas turbines available from the major gas turbine manufacturers.



Author(s):  
Mark H. Fernelius ◽  
Steven E. Gorrell

Abstract There is widespread interest in using pressure gain combustion in gas turbine engines to increase gas turbine engine efficiency and reduce fuel consumption. However, the fluctuating turbine inlet conditions inherent with pressure gain combustion cause a decrease in turbine efficiency. Designing a turbine for pulsing flow would counteract these losses. An optimization of turbine geometry for pulsing flow was conducted with entropy generation as the objective function. A surrogate model was used for the optimizations based on data extracted from 2D computational fluid dynamics simulations. Optimizations run for different pulsing amplitudes informed a revised turbine design. The new turbine geometry was validated with a periodic, time-accurate simulation and a decrease in entropy generation of 35% was demonstrated. The design recommendations were to weight the design of the turbine toward the peak of the pressure pulse, to consider the range of inlet angles and decrease the camber near the leading edge, and to reduce the blade turning.



Author(s):  
Nikhil Dev ◽  
Gopal Krishan Goyal ◽  
Rajesh Attri ◽  
Naresh Kumar

Combined Cycle Power Plant (CCPP) is one of the most efficient systems of energy conversion with different topping and bottoming cycles. One of the acceptable schemes, the combination of Brayton and Rankine Cycle, is analyzed for various design parameters. In the present analysis thermodynamic modelling of a CCPP with single steam extraction from bottoming Rankine Cycle is carried out to study the effect of Inlet Air Temperature (IAT), Cycle Ratio (CR), Turbine Inlet Temperature (TIT), air compressor and gas turbine efficiency on the first and second law efficiency. For parametric analysis computer programming tool Engineering Equation Solver (EES) is used and thermodynamic properties of many fluids and gases are inbuilt function of the software. From the results it is concluded that combustion chamber is the source of highest exergy destruction followed by heat recovery steam generator, gas turbine, air compressor and steam turbine. With increase in TIT, optimum CR is also found to be increased because both the gas turbine efficiency and the gas turbine exhaust temperature are increased for the optimum cycle ratio.



Sign in / Sign up

Export Citation Format

Share Document