Laboratory Study of Premixed H2-Air and H2-N2-Air Flames in a Low-Swirl Injector for Ultra-Low Emissions Gas Turbines

Author(s):  
R. K. Cheng ◽  
D. Littlejohn

The objective of this study is to conduct laboratory experiments on Low-swirl injectors (LSI) to obtain the basic information for adapting LSI to burn H2 and diluted H2 fuels that will be utilized in the gas turbines of the Integrated Gasification Combined Cycle (IGCC) coal power plants. The LSI is a novel ultra-low emission dry-low NOx combustion method that has been developed for gas turbines operating on natural gas. It is being developed for fuel-flexible turbines burning a variety of hydrocarbon fuels, bio-mass gases and refinery gases. Adaptation of the LSI to accept H2 flames is guided by an analytical expression derived from the flowfield characteristics and the turbulent flame speed correlation. Evaluation of the operating regimes of nine LSI configurations for H2 shows an optimum swirl number of 0.51 which is slightly lower than the swirl number of 0.54 for the hydrocarbon LSI. Using Particle Image Velocimetry the flowfields of 32 premixed H2-air and H2-N2-air flames were measured. The turbulent flame speeds deduced from PIV show linear correlation with turbulence intensity. The correlation constant for H2 is 3.1 and is higher than the 2.14 value for hydrocarbons. Analysis of velocity profiles confirms that the nearfield flow features of the H2 flames are self-similar. These results demonstrate that the basic LSI mechanism is not affected by the differences in the properties of H2 and hydrocarbon flames and support the feasibility of the LSI concept for hydrogen fueled gas turbines.

Author(s):  
R. K. Cheng ◽  
D. Littlejohn

The objective of this study is to conduct laboratory experiments on low-swirl injectors (LSIs) to obtain the basic information for adapting LSI to burn H2 and diluted H2 fuels that will be utilized in the gas turbines of the integrated gasification combined cycle coal power plants. The LSI is a novel ultralow emission dry-low NOx combustion method that has been developed for gas turbines operating on natural gas. It is being developed for fuel-flexible turbines burning a variety of hydrocarbon fuels, biomass gases, and refinery gases. The adaptation of the LSI to accept H2 flames is guided by an analytical expression derived from the flow field characteristics and the turbulent flame speed correlation. The evaluation of the operating regimes of nine LSI configurations for H2 shows an optimum swirl number of 0.51, which is slightly lower than the swirl number of 0.54 for the hydrocarbon LSI. Using particle image velocimetry (PIV), the flow fields of 32 premixed H2-air and H2–N2-air flames were measured. The turbulent flame speeds deduced from PIV show a linear correlation with turbulence intensity. The correlation constant for H2 is 3.1 and is higher than the 2.14 value for hydrocarbons. The analysis of velocity profiles confirms that the near field flow features of the H2 flames are self-similar. These results demonstrate that the basic LSI mechanism is not affected by the differences in the properties of H2 and hydrocarbon flames and support the feasibility of the LSI concept for hydrogen fueled gas turbines.


Author(s):  
Malath I. Arar

Gas Turbines (GT) applied to integrated gasification combined cycle (IGCC) power plants utilizing Nitrogen injection to reduce emission and increase power output. This redesign process reduced the customer’s equipment and the operational cost for GT’s with Nitrogen injection. This project focused on reducing nitrogen supply pressure required by the GT. Customer’s cost of electricity (COE) is reduced, translating to additional potential revenue of $3.0MM over the life of the plant. This has been achieved through six sigma methodology of design optimization of the Nitrogen injection manifold, reduced combustion chamber pressure entry loss and optimizing the control system. Statistical analysis combined with various engineering tools was used to optimize, validate and verify the new design. The new design is applicable to all GT frame sizes. It also, can be applied as an upgrade to existing units.


Author(s):  
Michael Tsurikov ◽  
Wolfgang Meier ◽  
Klaus-Peter Geigle

In order to investigate the combustion behavior of gas turbine flames fired with low-caloric syngases, a model combustor with good optical access for confined, non-premixed swirl flames was developed. The measuring techniques applied were particle image velocimetry, OH* chemiluminescence detection and laser-induced fluorescence of OH. Two different fuel compositions of H2, CO, N2 and CH4, with similar laminar burning velocities, were chosen. Their combustion behavior was studied at two different pressures, two thermal loads and two combustion air temperatures. The overall lean flames (equivalence ratio 0.5) burned very stably and their shapes and combustion behavior were hardly influenced by the fuel composition or by the different operating conditions. The experimental results constitute a data-base that will be used for the validation of numerical combustion models and form a part of a co-operative EC project aiming at the development of highly efficient gas turbines for IGCC (Integrated Gasification Combined Cycle) power plants.


Author(s):  
David Littlejohn ◽  
Robert K. Cheng ◽  
D. R. Noble ◽  
Tim Lieuwen

The low-swirl injector (LSI) is a lean premixed combustion technology that has the potential for adaptation to fuel-flexible gas turbines operating on a variety of fuels. The objective of this study is to gain a fundamental understanding of the effect of syngas on the LSI flame behavior, the emissions, and the flowfield characteristics for adaptation to the combustion turbines in integrated gasification combined cycle clean coal power plants. The experiments were conducted in two facilities. Open atmospheric laboratory flames generated by a full size (6.35 cm) LSI were used to investigate the lean blow-off limits, emissions, and the flowfield characteristics. Verification of syngas operation at elevated temperatures and pressures were performed with a reduced scale (2.54 cm) LSI in a small pressurized combustion channel. The results show that the basic LSI design is amenable to burning syngases with up to 60% H2. Syngases with high H2 concentration have lower lean blow-off limits. From particle image velocimetry measurements, the flowfield similarity behavior and the turbulent flame speeds of syngases flames are consistent with those observed in hydrocarbon and pure or diluted hydrogen flames. The NOx emissions from syngas flames show log-linear dependency on the adiabatic flame temperature and are comparable to those reported for the gaseous fuels reported previously. Successful firing of the reduced-scale LSI at 450 K<T<505 K and 8 atm verified the operability of this concept at gas turbine conditions.


2021 ◽  
Author(s):  
Silvia Ravelli

Abstract This study takes inspiration from a previous work focused on the simulations of the Willem-Alexander Centrale (WAC) power plant located in Buggenum (the Netherlands), based on integrated gasification combined cycle (IGCC) technology, under both design and off-design conditions. These latter included co-gasification of coal and biomass, in proportions of 30:70, in three different fuel mixtures. Any drop in the energy content of the coal/biomass blend, with respect to 100% coal, translated into a reduction in gas turbine (GT) firing temperature and load, according to the guidelines of WAC testing. Since the model was found to be accurate in comparison with operational data, here attention is drawn to the GT behavior. Hence part load strategies, such as fuel-only turbine inlet temperature (TIT) control and inlet guide vane (IGV) control, were investigated with the aim of maximizing the net electric efficiency (ηel) of the whole plant. This was done for different GT models from leading manufactures on a comparable size, in the range between 190–200 MW. The influence of fuel quality on overall ηel was discussed for three binary blends, over a wide range of lower heating value (LHV), while ensuring a concentration of H2 in the syngas below the limit of 30 vol%. IGV control was found to deliver the highest IGCC ηel combined with the lowest CO2 emission intensity, when compared not only to TIT control but also to turbine exhaust temperature control, which matches the spec for the selected GT engine. Thermoflex® was used to compute mass and energy balances in a steady environment thus neglecting dynamic aspects.


Author(s):  
Juan Pablo Gutierrez ◽  
Terry B. Sullivan ◽  
Gerald J. Feller

The increase in price of natural gas and the need for a cleaner technology to generate electricity has motivated the power industry to move towards Integrated Gasification Combined Cycle (IGCC) plants. The system uses a low heating value fuel such as coal or biomass that is gasified to produce a mixture of hydrogen and carbon monoxide. The potential for efficiency improvement and the decrease in emissions resulting from this process compared to coal-fired power plants are strong evidence to the argument that IGCC technology will be a key player in the future of power generation. In addition to new IGCC plants, and as a result of new emissions regulations, industry is looking at possibilities for retrofitting existing natural gas plants. This paper studies the feasibility of retrofitting existing gas turbines of Natural Gas Combined Cycle (NGCC) power plants to burn syngas, with a focus on the water/steam cycle design limitations and necessary changes. It shows how the gasification island processes can be treated independently and then integrated with the power block to make retrofitting possible. This paper provides a starting point to incorporate the gasification technology to current natural gas plants with minor redesigns.


Author(s):  
Sandro Barros Ferreira ◽  
Pericles Pilidis

The use of biomass as gas turbine combined cycle fuels is broadly seen as one of the alternatives to diminish greenhouse gas emissions, mainly CO2, due to the efficiency delivered by such systems and the renewable characteristic of biomass itself. Integrated gasification cycles, BIGGT, are the current technology available; however the gasification system severely penalizes the power plant in terms of efficiency and demands modifications in the engine to accommodate the large fuel mass flow. This gives an opportunity to improvements in the current technologies and implementation of new ones. This paper intends to analyze new alternatives to the use of solid fuels in gas turbines, from the economical point of view, through the use of external combustion, EFGT, discussing its advantages and limitations over the current technology. The results show that both EFGT and BIGGT technologies are economically competitive with the current natural gas fired gas turbines. However, BIGGT power plants are still in pilot scale and the EFGT plants need further technological development. Thermodynamically speaking, the inherently recuperative characteristic of the EFGT gas turbine engine makes it well suited to the biomass market. The thermal efficiency of this cycle is higher than the BIGGT system. Furthermore, its fuel flexibility and negligible pre-treatmet is another advantage that makes it an interesting option for the Brazilian market.


Sign in / Sign up

Export Citation Format

Share Document