Effect of Fuel Dilution on the Stability Characteristics of Syngas Diffusion Flames

Author(s):  
Kejin Mo ◽  
Yongsheng Zhang ◽  
Zhedian Zhang ◽  
Yue Wang ◽  
Yunhan Xiao ◽  
...  

In order to investigate the effects of fuel dilution on flame stability characteristics, open syngas diffusion flames are established and H2O, N2 and CO2 are employed respectively as diluents. The burner configuration used in this study consists of a bluff body with a central jet flow of the fuel and a surrounding coflow of the air. The syngas is composed of 50% of H2 and 50% of CO (by volume). The experiments are conducted at 1 atmospheric pressure, and the temperatures of the fuel and the air are kept constant at about 400 K. The results show that the flame tapers inward and becomes more cylindrical in the shape as after the dilution, the flame becomes unstable due to dilution effects. It has been found that there is a maximum flow rate of diluents responsible for the flame extinction. Among these three dilutions, H2O diluted flames exhibit a highest stability, while CO2 diluted flames have the lowest one due to its large specific heat. Planar Laser-Induced Fluorescence (PLIF) measurements of the OH radical are applied to study the behavior of the OH radical in the flames. The results show that as the diluents introduced into the flame increases, the overall OH mole fraction significantly decreases, and the flame width also decreases. The structures of flame bases are also studied to obtain a better understanding of fuel dilution effects on the flame stability. The radial stabilization distance is decreased and the local flame extinctions in the reaction zones are found as dilution increases. For operating conditions close to the flame extinction limit, the flame reaction zones in the flame bases take on a more intermittent, shredded appearance.

2020 ◽  
Vol 142 (10) ◽  
Author(s):  
Candy Hernandez ◽  
Vincent McDonell

Abstract A correlation for the prediction of flame lean extinction limits for premixed combustion systems by Sullivan-Lewis and McDonell is examined. The correlation was developed with the data collected from Sullivan-Lewis' experiments of methane and hydrogen mixtures at elevated temperatures and pressures, similar to gas turbine conditions. Recent flame stability studies have since appeared in literature and has allowed for inspection of the validity of the predictive flame extinction boundary correlation with new data. The blow-off boundary correlation is also examined with previous flame blow off studies with significant variances of parameters compared to the original study used to build the correlation. The data used for comparison differ with fuel type, equivalence ratios, pressures, temperatures, turbulence intensities, and flameholder geometries. The analysis concludes that the predictive flame extinction correlation developed is able to accurately predict a wide range of extinction conditions reported in the literature. However, it is observed that the correlation is not able to fully capture the behavior of the data for conditions in which turbulence intensities are above 5%.


2020 ◽  
Vol 215 ◽  
pp. 224-237 ◽  
Author(s):  
Anthony J. Morales ◽  
Jonathan Reyes ◽  
Peter H. Joo ◽  
Isaac Boxx ◽  
Kareem A. Ahmed

Author(s):  
I. V. Novosselov ◽  
P. C. Malte ◽  
S. Yuan ◽  
R. Srinivasan ◽  
J. C. Y. Lee

A chemical reactor network (CRN) is developed and applied to a dry low emissions (DLE) industrial gas turbine combustor with the purpose of predicting exhaust emissions. The development of the CRN model is guided by reacting flow computational fluid dynamics (CFD) using the University of Washington (UW) eight-step global mechanism. The network consists of 31 chemical reactor elements representing the different flow and reaction zones of the combustor. The CRN is exercised for full load operating conditions with variable pilot flows ranging from 35% to 200% of the neutral pilot. The NOpilot. The NOx and the CO emissions are predicted using the full GRI 3.0 chemical kinetic mechanism in the CRN. The CRN results closely match the actual engine test rig emissions output. Additional work is ongoing and the results from this ongoing research will be presented in future publications.


2020 ◽  
Author(s):  
Γεώργιος Πατεράκης

The current work describes an experimental investigation of isothermal and turbulent reacting flow field characteristics downstream of axisymmetric bluff body stabilizers under a variety of inlet mixture conditions. Fully premixed and stratified flames established downstream of this double cavity premixer/burner configuration were measured and assessed under lean and ultra-lean operating conditions. The aim of this thesis was to further comprehend the impact of stratifying the inlet fuelair mixture on the reacting wake characteristics for a range of practical stabilizers under a variety of inlet fuel-air settings. In the first part of this thesis, the isothermal mean and turbulent flow features downstream of a variety of axisymmetric baffles was initially examined. The effect of different shapes, (cone or disk), blockage ratios, (0.23 and 0.48), and rim thicknesses of these baffles was assessed. The variations of the recirculation zones, back flow velocity magnitude, annular jet ejection angles, wake development, entrainment efficiency, as well as several turbulent flow features were obtained, evaluated and appraised. Next, a comparative examination of the counterpart turbulent cold fuel-air mixing performance and characteristics of stratified against fully-premixed operation was performed for a wide range of baffle geometries and inlet mixture conditions. Scalar mixing and entrainment properties were investigated at the exit plane, at the bluff body annular shear layer, at the reattachment region and along the developing wake were investigated. These isothermal studies provided the necessary background information for clarifying the combustion properties and interpreting the trends in the counterpart turbulent reacting fields. Subsequently, for selected bluff bodies, flame structures and behavior for operation with a variety of reacting conditions were demonstrated. The effect of inlet fuel-air mixture settings, fuel type and bluff body geometry on wake development, flame shape, anchoring and structure, temperatures and combustion efficiencies, over lean and close to blow-off conditions, was presented and analyzed. For the obtained measurements infrared radiation, particle image velocimetry, laser doppler velocimetry, chemiluminescence imaging set-ups, together with Fouriertransform infrared spectroscopy, thermocouples and global emission analyzer instrumentation was employed. This helped to delineate a number of factors that affectcold flow fuel-air mixing, flame anchoring topologies, wake structure development and overall burner performance. The presented data will also significantly assist the validation of computational methodologies for combusting flows and the development of turbulence-chemistry interaction models.


2018 ◽  
Vol 10 (9) ◽  
pp. 168781401879087 ◽  
Author(s):  
Yinli Xiao ◽  
Zhibo Cao ◽  
Changwu Wang

The objective of this study is to gain a fundamental understanding of the flow-field and flame behaviors associated with a low-swirl burner. A vane-type low-swirl burner with different swirl numbers has been developed. The velocity field measurements are carried out with particle image velocimetry. The basic flame structures are characterized using OH radicals measured by planar laser-induced fluorescence. Three combustion regimes of low-swirl flames are identified depending on the operating conditions. For the same low-swirl injector under atmospheric conditions, attached flame is first observed when the incoming velocity is too low to generate vortex breakdown. Then, W-shaped flame is formed above the burner at moderate incoming velocity. Bowl-shaped flame structure is formed as the mixture velocity increases until it extinct. Local extinction and relight zones are observed in the low-swirl flame. Flow-field features and flame stability limits are obtained for the present burner.


2021 ◽  
Author(s):  
Fujun Sun ◽  
Jianqin Suo ◽  
Zhenxia Liu

Abstract Based on the development trend of incorporating fuel holes into swirler-vanes and the advantages of wide operating conditions as well as low NOx emissions of LSI, this paper proposes an original lean premixed LSI with a convergent outlet. The influence of key structures on flowfields and fuel/air premixing uniformities of LSI is investigated by the combination of laser diagnostic experiments and numerical simulations. The flowfields of LSI shows that the main recirculation zone is detached from the convergent outlet and its axial dimensions are smaller than that of HSI, which can decrease the residence time of high-temperature gas to reduce NOx emissions. The fuel/air premixing characteristics show that the positions and diameters of fuel holes affect fuel/air premixing by changing the penetration depth of fuel. And when the penetration depth is moderate, it can give full play to the role of swirling air in enhancing premixing of fuel and air. In addition, the increase of the length of the premixing section can improve the uniformity of fuel/ar premixing, but it can also weaken the swirl intensity and increase the residence time of the combustible mixture within the LSI, which can affect flame stability and increase the risk of auto-ignition. Therefore, the design and selection of LSI structural parameters should comprehensively consider the requirements of fuel/air mixing uniformity, flame stability and avoiding the risk of auto-ignition. The results can provide the technical basis for LSI design and application in aero-derivative and land-based gas turbine combustors.


Author(s):  
Mahdi Mollamahdi ◽  
Seyed Abdolmehdi Hashemi

The effects of porous and solid bluff bodies in the combustion chamber on flame stability limits, gas and solid temperature distributions, pressure drop, methane conversion rate, and CO and NO emissions are examined numerically. The porous and solid bluff bodies are made of SiC with the inner diameter of 50 mm, the outer diameter of 90 mm, and the length of 22 mm. In this study, Renormalization Group k–ε is used for modeling of turbulence. Eddy dissipation concept is selected for modeling of the interaction between turbulence and chemistry. A reduced mechanism based on GRI 3.0 consisting of 16 species and 41 reactions is employed to model methane combustion. The results indicate that the upper flame stability limit can be diminished by adding porous bluff body in the combustion chamber instead of the solid bluff body. Besides, the pressure drop, CO and NO emissions in the combustion chamber with solid bluff body are higher than those of porous bluff body, while the methane conversion rate increases by replacing porous bluff body instead of solid bluff body in the combustion chamber.


Sign in / Sign up

Export Citation Format

Share Document