A numerical study on the flame characteristics and pollutant emissions in a premixed burner: Comparison between porous and solid bluff bodies

Author(s):  
Mahdi Mollamahdi ◽  
Seyed Abdolmehdi Hashemi

The effects of porous and solid bluff bodies in the combustion chamber on flame stability limits, gas and solid temperature distributions, pressure drop, methane conversion rate, and CO and NO emissions are examined numerically. The porous and solid bluff bodies are made of SiC with the inner diameter of 50 mm, the outer diameter of 90 mm, and the length of 22 mm. In this study, Renormalization Group k–ε is used for modeling of turbulence. Eddy dissipation concept is selected for modeling of the interaction between turbulence and chemistry. A reduced mechanism based on GRI 3.0 consisting of 16 species and 41 reactions is employed to model methane combustion. The results indicate that the upper flame stability limit can be diminished by adding porous bluff body in the combustion chamber instead of the solid bluff body. Besides, the pressure drop, CO and NO emissions in the combustion chamber with solid bluff body are higher than those of porous bluff body, while the methane conversion rate increases by replacing porous bluff body instead of solid bluff body in the combustion chamber.

2021 ◽  
pp. 146808742110050
Author(s):  
Stefania Esposito ◽  
Lutz Diekhoff ◽  
Stefan Pischinger

With the further tightening of emission regulations and the introduction of real driving emission tests (RDE), the simulative prediction of emissions is becoming increasingly important for the development of future low-emission internal combustion engines. In this context, gas-exchange simulation can be used as a powerful tool for the evaluation of new design concepts. However, the simplified description of the combustion chamber can make the prediction of complex in-cylinder phenomena like emission formation quite challenging. The present work focuses on the prediction of gaseous pollutants from a spark-ignition (SI) direct injection (DI) engine with 1D–0D gas-exchange simulations. The accuracy of the simulative prediction regarding gaseous pollutant emissions is assessed based on the comparison with measurement data obtained with a research single cylinder engine (SCE). Multiple variations of engine operating parameters – for example, load, speed, air-to-fuel ratio, valve timing – are taken into account to verify the predictivity of the simulation toward changing engine operating conditions. Regarding the unburned hydrocarbon (HC) emissions, phenomenological models are used to estimate the contribution of the piston top-land crevice as well as flame wall-quenching and oil-film fuel adsorption-desorption mechanisms. Regarding CO and NO emissions, multiple approaches to describe the burned zone kinetics in combination with a two-zone 0D combustion chamber model are evaluated. In particular, calculations with reduced reaction kinetics are compared with simplified kinetic descriptions. At engine warm operation, the HC models show an accuracy mainly within 20%. The predictions for the NO emissions follow the trend of the measurements with changing engine operating parameters and all modeled results are mainly within ±20%. Regarding CO emissions, the simplified kinetic models are not capable to predict CO at stoichiometric conditions with errors below 30%. With the usage of a reduced kinetic mechanism, a better prediction capability of CO at stoichiometric air-to-fuel ratio could be achieved.


2015 ◽  
Vol 787 ◽  
pp. 727-731 ◽  
Author(s):  
S. Boopathi ◽  
P. Maran ◽  
V. Caleb Eugene ◽  
S. Prabhu

The experimental investigation has been carried out to study the stabilization and blowout mechanisms of turbulent flame stabilized by V-gutter bluff body in a square duct at reactive and non-reactive conditions. V-shaped bluff bodies made of stainless steel having 1.6 mm thicknessare used for stabilization of the flame.Experiments have been conducted at selective velocities of commercially available methane and oxygen with 60 degree V-gutter as flame holder. It is observed that at stoichiometric conditions, the V-gutter is dominated by shear layer stabilized flames. The flame stability is influenced by bluff body dimensions and mass flow rate which play a major role in combustion instabilities mixing of air fuel ratio and blow off. The lift off decreases at higher blockage ratios.A strong recirculation zone is found in this test rig immediately downstream of the V-Gutter which gradually subsides and disappears far downstream.The lift off height is not much affected by the velocity of the fuel-air mixture.


Author(s):  
G. Riccio ◽  
P. Adami ◽  
F. Martelli ◽  
D. Cecchini ◽  
L. Carrai

An aerodynamic study for the premixing device of an industrial turbine gas combustor is discussed. The present work is based on a joint application of numerical CFD and experimental investigation tools in order to verify and optimize the combustor gaseous fuel injection system. The objective is the retrofit of an old generation gas turbine combustion chamber that is carried out considering new targets of NOx emission keeping the same CO and combustion stability performances. CFD has been used to compare different premixing duct configurations for improved mixing features. Experimental test has been carried out in order to assess the pollutant emissions, flame stability and pattern factor characteristics of the full combustion chamber retrofitted with the modified injection system.


2019 ◽  
Vol 23 (5 Part B) ◽  
pp. 2971-2981 ◽  
Author(s):  
Dias Umyshev ◽  
Abay Dostiyarov ◽  
Andrey Kibarin ◽  
Galya Tyutebayeva ◽  
Gaziza Katranova ◽  
...  

Blow-off performance and NOx emissions of the propane and air mixture in a rectangular combustion chamber with bluff bodies were investigated experimentally and numerically. The effects of distance between bluff bodies on NOx emissions, the blow-off limit, and exhaust gas temperature were examined. It was observed that NOx emissions are highly dependent on distance between V-gutters. The re-circulation zone behind the bluff body expands in width based on the decrease of distance between V-gutters, and expands in length with the increase of inlet velocity. The temperature fields behind the bluff body show a similar change, the temperature behind the bluff body reaches its highest when the distance between V-gutters reaches 20 mm, meaning it has better flame stability. The blow-off limit is significantly improved with the decrease of distance between V-gutters. The blow-off limit is greatly improved by reducing the distance between the V-gutters. Maximum blow-off limit of 0.11 is reached in the case of 20 mm, compared with 0.16 at 50 mm at a speed of 10 m/s.


Author(s):  
Mahdi Mollamahdi ◽  
Seyed Abdolmehdi Hashemi

In the present investigation, the effects of inner diameter and length of porous wall on flame stability limits, temperature distribution, methane conversion, and pressure drop in a premixed burner are numerically analyzed. The governing equations are solved by the control volume method, considering Re-Normalization Group k-ɛ for turbulence modeling and eddy dissipation concept for turbulence–chemistry interaction modeling. The simulations are performed for various porous walls with the inner diameter of 30, 40, and 50 mm and the length of 22, 44, and 66 mm. The results demonstrate that the increase in inner diameter of porous wall causes an increase in the lower flame stability limit and a decrease in the upper flame stability limit, gas and solid temperatures, pressure drop, and methane conversion. Also, the maximum solid and gas temperatures in the porous wall and methane conversion are related to the porous wall with 44 mm length. Furthermore, the methane conversion and pressure drop increase with the rise in the equivalence ratio. Finally, it can be said that the change in inner diameter of porous wall is more important than the length of porous wall in the studied phenomena.


Author(s):  
Yu. G. Kutsenko ◽  
S. F. Onegin ◽  
L. Y. Gomzikov

Most of the modern combustor’s designs use staged concepts for reducing thermal NO emissions. Usually, a combustion process takes place inside the main zone, which uses very lean premixed fuel/air mixtures. A diffusion pilot zone supports combustion process inside a lean main zone. Thermal NO formation process takes place predominantly inside hot diffusion flame. So, operation modes of pilot and main zones must be arranged to provide low NO emissions of pilot zone and maintain flame stability inside the main zone simultaneously. In this paper a concept of new turbulent model combustion model is presented. This model allows to model diffusion and premixed flames and takes into account various physical processes, which lead to flame destabilization. The model uses an equation for reaction progress variable. In the frameworks of considered approach this equation has three source terms. These terms are responsible for different conditions of combustion process: diffusion flames, premixed flames and distributed reaction zones. A proposed model was widely validated for different types of combustion chambers such as: 1) Bluff-body flameholder (lean premixed combustion: modeling of lean blow out); 2) Conventional diffusion regime of combustion chamber of gas turbine engine (modeling of flame stabilization and NO emissions); 3) Combined combustion regime of combustion chamber: burning process is inside pilot diffusion and main premixed zones (NO emissions and lean blow out limits for several operational modes). These tests had shown a good agreement of experimentally obtained data with results of simulations.


Computation ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 43
Author(s):  
Shokri Amzin ◽  
Mohd Fairus Mohd Yasin

As emission legislation becomes more stringent, the modelling of turbulent lean premixed combustion is becoming an essential tool for designing efficient and environmentally friendly combustion systems. However, to predict emissions, reliable predictive models are required. Among the promising methods capable of predicting pollutant emissions with a long chemical time scale, such as nitrogen oxides (NOx), is conditional moment closure (CMC). However, the practical application of this method to turbulent premixed flames depends on the precision of the conditional scalar dissipation rate,. In this study, an alternative closure for this term is implemented in the RANS-CMC method. The method is validated against the velocity, temperature, and gas composition measurements of lean premixed flames close to blow-off, within the limit of computational fluid dynamic (CFD) capability. Acceptable agreement is achieved between the predicted and measured values near the burner, with an average error of 15%. The model reproduces the flame characteristics; some discrepancies are found within the recirculation region due to significant turbulence intensity.


2008 ◽  
Vol 131 (1) ◽  
Author(s):  
J. C. Hu ◽  
Y. Zhou

The wake of asymmetric bluff bodies was experimentally measured using particle imaging velocimetry, laser Doppler anemometry, load cell, hotwire, and flow visualization techniques at Re=2600–8500 based on the freestream velocity and the characteristic height of the bluff bodies. Asymmetry is produced by rounding some corners of a square cylinder and leaving others unrounded. It is found that, with increasing corner radius, the flow reversal region is expanded, and the vortex formation length is prolonged. Accordingly, the vortex shedding frequency increases and the base pressure rises, resulting in a reduction in the mean drag as well as the fluctuating drag and lift. It is further found that, while the asymmetric cross section of the cylinder causes the wake centerline to shift toward the sharp corner side of the bluff body, the wake remains globally symmetric about the shifted centerline. The near wake of asymmetric bluff bodies is characterized in detail, including the Reynolds stresses, characteristic velocity, and length scale, and is further compared with that of the symmetric ones.


Sign in / Sign up

Export Citation Format

Share Document