Enhanced Blade Row Matching Capabilities via 3D Multistage Inverse Design and Pressure Loading Manager

Author(s):  
M. P. C. van Rooij ◽  
T. Q. Dang ◽  
L. M. Larosiliere

Three-dimensional inverse design has become a reliable and powerful tool for facilitating the refinement of blading designs. Its main strength lies in the direct control offered over local aerodynamics and, when the method is based on pressure loading, net circulation. While the ability to specify pressure loading offers many advantages, it is often not obvious to a designer what loading distribution should be prescribed. Not only should a suitable blade shape be achieved, but also satisfactory performance and design constraints such as mass flow, exit flow angle distributions and compression ratio. This problem is exacerbated when applying inverse design in a multistage environment, where interactions between blade rows affect the design and the resulting flow field in ways that are often intractable. Thus, numerous revisions of the prescribed loading, with a careful examination of how changes to the prescribed loading influence the resulting design, can still be necessary before obtaining a satisfactory design. A pressure loading manager has been developed to alleviate these problems. This loading manager can automatically adjust pressure loading distributions during the inverse design process to achieve greater control over the aerodynamic design intent. In combination with a fully three-dimensional multistage viscous inverse design method, a powerful method for blading revision is obtained that offers enhanced aerodynamic matching capabilities and design point control. Increased aero-design quality and productivity in difficult design situations can be achieved. This is demonstrated with the redesign of a highly loaded 2.5-stage transonic compressor.

Author(s):  
Michel van Rooij ◽  
Adam Medd

Three-dimensional inverse design has been shown to be a reliable and powerful tool for facilitating the refinement of blading design and improving stage matching, thereby providing increased aero-design quality and productivity in difficult design situations. However, inverse design has not been incorporated widely into design systems. Reasons for this may be that many inverse techniques are limited to two dimensional problems, or are highly integrated with a specific flow solver and therefore difficult to integrate with proprietary or commercial CFD methods. A reformulation of a three-dimensional inverse design method is presented here that overcomes these limitations. The new method is fully consistent with viscous flow modeling. Camber modification is performed using a blade velocity derived from the difference between prescribed and actual pressure loading. The new inverse method completely eliminates differences between analysis and inverse calculations. Moreover, the reformulation effectively decouples the inverse method from the flow solver. This makes it possible to supplement any CFD-code with the developed inverse design module, provided an interface can be created between the solver and the inverse module through which to pass information on flow and mesh. This makes inverse design available to most design offices.


2021 ◽  
Vol 11 (11) ◽  
pp. 4845
Author(s):  
Mohammad Hossein Noorsalehi ◽  
Mahdi Nili-Ahmadabadi ◽  
Seyed Hossein Nasrazadani ◽  
Kyung Chun Kim

The upgraded elastic surface algorithm (UESA) is a physical inverse design method that was recently developed for a compressor cascade with double-circular-arc blades. In this method, the blade walls are modeled as elastic Timoshenko beams that smoothly deform because of the difference between the target and current pressure distributions. Nevertheless, the UESA is completely unstable for a compressor cascade with an intense normal shock, which causes a divergence due to the high pressure difference near the shock and the displacement of shock during the geometry corrections. In this study, the UESA was stabilized for the inverse design of a compressor cascade with normal shock, with no geometrical filtration. In the new version of this method, a distribution for the elastic modulus along the Timoshenko beam was chosen to increase its stiffness near the normal shock and to control the high deformations and oscillations in this region. Furthermore, to prevent surface oscillations, nodes need to be constrained to move perpendicularly to the chord line. With these modifications, the instability and oscillation were removed through the shape modification process. Two design cases were examined to evaluate the method for a transonic cascade with normal shock. The method was also capable of finding a physical pressure distribution that was nearest to the target one.


Author(s):  
James H. Page ◽  
Paul Hield ◽  
Paul G. Tucker

Semi-inverse design is the automatic re-cambering of an aerofoil, during a computational fluid dynamics (CFD) calculation, in order to achieve a target lift distribution while maintaining thickness, hence “semi-inverse”. In this design method, the streamwise distribution of curvature is replaced by a stream-wise distribution of lift. The authors have developed an inverse design code based on the method of Hield (2008) which can rapidly design three-dimensional fan blades in a multi-stage environment. The algorithm uses an inner loop to design to radially varying target lift distributions, an outer loop to achieve radial distributions of stage pressure ratio and exit flow angle, and a choked nozzle to set design mass flow. The code is easily wrapped around any CFD solver. In this paper, we describe a novel algorithm for designing simultaneously for specified performance at full speed and peak efficiency at part speed, without trade-offs between the targets at each of the two operating points. We also introduce a novel adaptive target lift distribution which automatically develops discontinuous changes of calculated magnitude, based on the passage shock, eliminating erroneous lift demands in the shock vicinity and maintaining a smooth aerofoil.


Energies ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 3210
Author(s):  
Wei Yang ◽  
Benqing Liu ◽  
Ruofu Xiao

Hydraulic machinery with high performance is of great significance for energy saving. Its design is a very challenging job for designers, and the inverse design method is a competitive way to do the job. The three-dimensional inverse design method and its applications to hydraulic machinery are herein reviewed. The flow is calculated based on potential flow theory, and the blade shape is calculated based on flow-tangency condition according to the calculated flow velocity. We also explain flow control theory by suppression of secondary flow and cavitation based on careful tailoring of the blade loading distribution and stacking condition in the inverse design of hydraulic machinery. Suggestions about the main challenge and future prospective of the inverse design method are given.


2019 ◽  
Vol 5 (10) ◽  
pp. eaax4769 ◽  
Author(s):  
Alan Zhan ◽  
Ricky Gibson ◽  
James Whitehead ◽  
Evan Smith ◽  
Joshua R. Hendrickson ◽  
...  

Controlling the propagation of optical fields in three dimensions using arrays of discrete dielectric scatterers is an active area of research. These arrays can create optical elements with functionalities unrealizable in conventional optics. Here, we present an inverse design method based on the inverse Mie scattering problem for producing three-dimensional optical field patterns. Using this method, we demonstrate a device that focuses 1.55-μm light into a depth-variant discrete helical pattern. The reported device is fabricated using two-photon lithography and has a footprint of 144 μm by 144 μm, the largest of any inverse-designed photonic structure to date. This inverse design method constitutes an important step toward designer free-space optics, where unique optical elements are produced for user-specified functionalities.


2020 ◽  
Vol 143 (2) ◽  
Author(s):  
Luying Zhang ◽  
Gabriel Davila ◽  
Mehrdad Zangeneh

Abstract This paper presents three different multiobjective optimization strategies for a high specific speed centrifugal volute pump design. The objectives of the optimization consist of maximizing the efficiency and minimizing the cavitation while maintaining the Euler head. The first two optimization strategies use a three-dimensional (3D) inverse design method to parametrize the blade geometry. Both meridional shape and 3D blade geometry are changed during the optimization. In the first approach, design of experiment (DOE) method is used and the pump efficiency is obtained from computational fluid dynamics (CFD) simulations, while cavitation is evaluated by using minimum pressure on blade surface predicted by 3D inverse design method. The design matrix is then used to create a surrogate model where optimization is run to find the best tradeoff between cavitation and efficiency. This optimized geometry is manufactured and tested and is found to be 3.9% more efficient than the baseline with reduced cavitation at high flow. In the second approach, only the 3D inverse design method output is used to compute the efficiency and cavitation parameters and this leads to considerable reduction to the computational time. The resulting optimized geometry is found to be similar to the computationally more expensive solution based on 3D CFD results. In order to compare the inverse design based optimization to the conventional optimization, an equivalent optimization is carried out by parametrizing the blade angle and meridional shape.


Author(s):  
Yujie Zhu ◽  
Yaping Ju ◽  
Chuhua Zhang

Most of the inverse design methods of turbomachinery experience the shortcoming where the target aerodynamic parameters need to be manually specified depending on the designers’ experience and insight, making the design result aleatory and even deviated from the real optimal solution. To tackle this problem, an experience-independent inverse design optimization method is proposed and applied to the redesign of a compressor cascade airfoil in this study. The experience-independent inverse design optimization method can automatically obtain the target pressure distribution along the cascade airfoil through the genetic algorithm, rather than through the manual specification approach. The shape of cascade airfoil is then solved by the adjoint method. The effectiveness of the experience-independent inverse design optimization method is demonstrated by two inverse design cases of the compressor cascade airfoil, i.e. the inverse design of only the suction surface and the inverse design of both the suction and pressure surfaces. The results show that the proposed inverse design method is capable of significantly improving the aerodynamic performance of the compressor cascade. At the examined flow condition, a thin airfoil profile is beneficial to flow accelerations near the leading edge and flow separation avoidance near the trailing edge. The proposed inverse design method is quite generic and can be extended to the three-dimensional inverse design of advanced compressor blades.


2002 ◽  
Vol 124 (2) ◽  
pp. 319-328 ◽  
Author(s):  
Akira Goto ◽  
Mehrdad Zangeneh

A new approach to optimizing a pump diffuser is presented, based on a three-dimensional inverse design method and a Computational Fluid Dynamics (CFD) technique. The blade shape of the diffuser was designed for a specified distribution of circulation and a given meridional geometry at a low specific speed of 0.109 (non-dimensional) or 280 (m3/min, m, rpm). To optimize the three-dimensional pressure fields and the secondary flow behavior inside the flow passage, the diffuser blade was more fore-loaded at the hub side as compared with the casing side. Numerical calculations, using a stage version of Dawes three-dimensional Navier-Stokes code, showed that such a loading distribution can suppress flow separation at the corner region between the hub and the blade suction surface, which was commonly observed with conventional designs having a compact bowl size (small outer diameter). The improvements in stage efficiency were confirmed experimentally over the corresponding conventional pump stage. The application of multi-color oil-film flow visualization confirmed that the large area of the corner separation was completely eliminated in the inverse design diffuser.


Author(s):  
Kosuke Ashihara ◽  
Akira Goto ◽  
Shijie Guo ◽  
Hidenobu Okamoto

In this paper, a new aerodynamic design procedure is presented for a centrifugal compressor stage of a microturbine system. To optimize the three-dimensional (3-D) flows and the performance, an inverse design method, which numerically generates the 3-D blade geometry for specified blade loading distribution, has been applied together with the numerical validation using CFD (Computational Fluid Dynamics) and FEM (Finite Element Method). The blade profile along the shroud surface of the impeller was optimized based on the 3-D inverse design and CFD. However, the blade profile towards the hub surface was modified geometrically to achieve a nearly radial blade element especially at the inducer part of the impeller, in order to meet the required structural strength. The modified impeller successfully kept similar aerodynamic performance as that of a blade with a fully 3-D shape, whilst showing improved structural reliability. So, the proposed method to adopt the blade profile designed by the inverse method along the shroud, and to geometrically modify the blade profile towards the hub, was confirmed to be effective to design a high-speed compressor impeller. The vaned diffuser has also been re-designed using the inverse design method. The corner separation in the conventional wedge-type diffuser channel was suppressed in the new design. The stage performance improvements were confirmed by stage calculations using CFD.


Sign in / Sign up

Export Citation Format

Share Document