Compensation of Intake Induced Flow Non-Uniformities With Compressor Blade Lean Angle Changes

Author(s):  
Ioannis Templalexis ◽  
Vassilios Pachidis ◽  
Petros Kotsiopoulos

The compression system has traditionally drawn most of the attention concerning the gas turbine engine performance assessment and design procedure. It is the most vulnerable component to flow fluctuations within a gas turbine engine. In particular this study focuses on performance deviations, between an installed and an uninstalled compressor. Test results acquired from a test bed installation will differ from these recorded when the compressor operates as an integral part of the engine. The upstream duct, whether an intake or an interstage duct, will affect the flow field pattern ingested into the compressor. The case studies presented into this work aim to mostly qualify the effect of boundary layer growth along the upstream duct walls, upon compressor performance. Additionally, compressor performance response on blade lean angle variation is being addressed, with the aim of acquiring an understanding as to how compressor blade lean angle changes interact with intake induced flow non uniformities. Such studies are usually conducted during the preliminary design stage, before the compressor is built. Consequently, experimental performance investigation is excluded at this stage of development. Computer aided simulation techniques are between the few if not the only option for compressor performance prediction. Given the fact that many such design parameters need to be assessed under the time pressure exerted by the tight compressor development program, the compressor flow simulation technique used needs to provide reliable results while consuming the least possible computational time. Such a low computational time compressor flow simulation method, among others, is the two dimensional (2D) streamline curvature (SLC) method, being applied within the frame of reference of the current study. The paper is introduced by a brief discussion on SLC method that was proposed more than 50 years ago. Then a reference is made to the Radial Equilibrium Equation (REE) which is the mathematical basis of the code, commenting on the assumptions that were undertaken. Subsequently the influence of the intake presence on the compressor inlet radial flow distribution is being addressed, with the aim of adjusting compressor blade inlet lean angle, in order to minimize compressor performance deterioration. Finally the paper is concluded with a discussion of the results.

Author(s):  
Alexandr N. Arkhipov ◽  
Yury A. Ravikovich ◽  
Anton A. Matushkin ◽  
Dmitry P. Kholobtsev

Abstract The regional aircraft with a turbofan gas turbine engine, created in Russia, is successfully operated in the world market. Further increase of the life and reduction of the cost of the life cycle are necessary to ensure the competitive advantages of the engine. One of the units limiting the engine life is the compressor rotor. The cyclic life of the rotor depends on many factors: the stress-strain state in critical zones, the life of the material under low-cycle loading, the regime of engine operation, production deviations (within tolerances), etc. In order to verify the influence of geometry deviations, the calculations of the model with nominal dimensions and the model with the most unfavorable geometric dimensions (worst cases) have been carried out. The obtained influence coefficients for geometric and weight tolerances are then used for probabilistic modeling of stresses in the critical zone. Rotor speed and gas loads on the blades for different flight missions and engine wear are determined from the corresponding aerodynamic calculations taking into account the actual flight cycles (takeoff, reduction, reverse) and are also used for stress recalculations. The subsequent calculation of the rotor cyclic life and the resource assessment is carried out taking into account the spread of the material low-cycle fatigue by probabilistic modeling of the rotor geometry and weight loads. A preliminary assessment of the coefficients of tolerances influence on stress in the critical zone can be used to select the optimal (in terms of life) tolerances at the design stage. Taking into account the actual geometric and weight parameters can allow estimating the stress and expected life of each manufactured rotor.


2014 ◽  
Vol 14 (3) ◽  
pp. 296-302 ◽  
Author(s):  
R. K. Mishra ◽  
Johney Thomas ◽  
K. Srinivasan ◽  
Syed Iftekar Ahmed

2016 ◽  
Vol 36 (12) ◽  
pp. 1058-1065 ◽  
Author(s):  
M. A. Bolotov ◽  
V. A. Pechenin ◽  
N. V. Ruzanov

Author(s):  
EP Filinov ◽  
VS Kuz’michev ◽  
A Yu Tkachenko ◽  
YaA Ostapyuk ◽  
IN Krupenich

Development of a gas turbine engine starts with optimization of the working process parameters. Turbine inlet temperature is among the most influential parameters that largely determine performance of an engine. As typical turbine inlet temperatures substantially exceed the point where metal turbine blades maintain reasonable thermal strength, proper modeling of the turbine cooling system becomes crucial for optimization of the engine’s parameters. Currently available numerical models are based on empirical data and thus must be updated regularly. This paper reviews the published information on turbine cooling requirements, and provides an approximation curve that generalizes data on all types of blade/vane cooling and is suitable for computer-based optimization.


2019 ◽  
Vol 18 (1) ◽  
pp. 109-117
Author(s):  
M. B. Sazonov ◽  
L. V. Solovatskaya

Different types of final strengthening treatment of gas turbine engine (GTD) compressor blades are considered. The influence of each type of treatment on the formation of roughness of the surface with favorable microrelief, as well as on the level and depth of distribution of residual compressive stresses in the compressor blade airfoil is analyzed. The causes of blade fatigue failure are described and methods of controlling this kind of failure are presented. The results of testing special specimens made of VT9 titanic alloy are presented to establish the influence of final strengthening treatment modes on the compressor blade resistance to fatigue stress. The results of testing residual stress distribution along the thickness of compressor blade airfoil are presented. A method of improving dynamic strengthening of specimens due to the protection of compressor blade edges is discussed. The results of semi-graphical analysis of the stressed state of low-pressure and medium-pressure compressor blades made of VT9 alloy are presented. They take into account residual stresses, as well as operating load stresses in the process of operation. We show that it is possible to increase the limit of the blade endurance due to the optimization of residual stress diagrams by improving the final strengthening technology with the use of dust blasting.


Author(s):  
Александр Михайлов ◽  
Alexander Mikhailov ◽  
А. Байков ◽  
A. Baykov ◽  
В. Михайлов ◽  
...  

The analysis of peculiarities in compressor blade operation of the turbo-shaft gas turbine engine is carried out. At the same time the compressor blade structuring into groups is carried and it is shown that structural groups of blades operate under different conditions of operation. It is defined, that different structural groups of compressor blades have their own definite peculiarities of operation and erosion wear. It is shown, that the erosion wear of all groups of compressor blades may be characterized by irregularities of three kinds. In the paper a general approach to life increase of all groups of compressor blades in a helicopter gas turbine engine is offered.


Author(s):  
Eugene P. Weinert ◽  
Gilbert A. Carlton

The gas-turbine engine in naval service is subjected to severe operating conditions. By far the most consistent troublemaker is sea salt. In either liquid or solid state, sea salt causes problems in corrosion of hot and cold surfaces, fouling of fuel systems, and deterioration of compressor performance. Such problems are reviewed and solutions discussed.


Sign in / Sign up

Export Citation Format

Share Document