Flow Field Structures of the Impeller Backside Cavity and Its Influences on the Centrifugal Compressor

Author(s):  
Zhigang Sun ◽  
Chunqing Tan ◽  
Dongyang Zhang

The impeller backside cavity is one of the unique features of the centrifugal compressors, it can affect the aerodynamic performances of a centrifugal compressor in many ways. This paper presents the researches on the coupled flow fields between a centrifugal compressor main flow passage and its impeller backside cavity. The flow field structures and features of the impeller backside cavity are presented for different leakage flow patterns, and its influences on the flow field details, axial thrust, shaft power, pressure ratio and efficiency of the centrifugal compressor have been studied. Some general conclusions are drawn for different centrifugal compressor operating conditions and impeller backside cavity leakage flow patterns.

Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 420
Author(s):  
Zhihua Lin ◽  
Zhitao Zuo ◽  
Wei Li ◽  
Jianting Sun ◽  
Xin Zhou ◽  
...  

Relying on a closed test rig of a high-power intercooling centrifugal compressor for compressed air energy storage (CAES), this study measured the static pressure and static temperature at different radii on the static wall of the impeller backside cavity (IBC) under variable rotating speeds. Simultaneously, the coupled computations of all mainstream domains with IBC or not were used for comparative analysis of the aerodynamic performances of the compressor and the internal flow field in IBC. The results show that IBC has a significant impact on coupling characteristics including pressure ratio, efficiency, torque, shaft power, and axial thrust of the centrifugal compressor. The gradients of radial static pressure and static temperature in IBC both increase with the decrease of mainstream flow or the increase of rotating speed, whose distributions are different under variable rotating speeds due to the change of the aerodynamic parameters of mainstream.


Author(s):  
Michele Marconcini ◽  
Filippo Rubechini ◽  
Andrea Arnone ◽  
Seiichi Ibaraki

The flow field of a high pressure ratio centrifugal compressor for turbocharger applications is investigated using a three-dimensional Navier-Stokes solver. The compressor is composed of a double-splitter impeller followed by a vaned diffuser. The flow field of the transonic open-shrouded impeller is highly three-dimensional, and it is influenced by shock waves, tip leakage vortices and secondary flows. Their interactions generate complex flow structures which are convected and distorted through the impeller blades. Both steady and unsteady computations are performed in order to understand the physical mechanisms which govern the impeller flow field while the operation ranges from choke to surge. Detailed Laser Doppler Velocimetry (LDV) flow measurements are available at various cross-sections inside the impeller blades at both design and off-design operating conditions.


Author(s):  
Daniel Swain ◽  
Abraham Engeda

Centrifugal compressor blade trimming can be used for the purpose of changing the performance characteristics of an impeller or allowing a single impeller design to be used for a range of operating conditions. There are a number of methods of impeller blade trimming that may be employed to change the impeller flowrate, the pressure ratio, or both; however, the limitations of blade trimming and the effect on the flow field are not well understood. In this study, CFD is used to model the effects of three different methods of blade trimming on a single centrifugal compressor design. Impeller performance characteristics and analysis of the flow field are presented for a series of trims for each of the three trimming methods. Each method of trimming was found to be limited at some point by choke. Shifting the original shroud profile both axially and radially in proportion to the desired flow coefficient allowed the pressure ratio and efficiency of the original impeller to be maintained while changing the flow coefficient. Trimming the blades along the meridional length in proportion to the desired new flow coefficient without regard to the original shroud profile produced similar results, but allowed the impeller to be trimmed further than was practical using the radial-axial shroud offset method. Trimming the blades axially so that the original shroud profile is maintained produced a change in pressure ratio while maintaining the original impeller flow coefficient.


2021 ◽  
Vol 11 (2) ◽  
pp. 780
Author(s):  
Dong Liang ◽  
Xingmin Gui ◽  
Donghai Jin

In order to investigate the effect of seal cavity leakage flow on a compressor’s performance and the interaction mechanism between the leakage flow and the main flow, a one-stage compressor with a cavity under the shrouded stator was numerically simulated using an inhouse circumferentially averaged through flow program. The leakage flow from the shrouded stator cavity was calculated simultaneously with main flow in an integrated manner. The results indicate that the seal cavity leakage flow has a significant impact on the overall performance of the compressor. For a leakage of 0.2% of incoming flow, the decrease in the total pressure ratio was 2% and the reduction of efficiency was 1.9 points. Spanwise distribution of the flow field variables of the shrouded stator shows that the leakage flow leads to an increased flow blockage near the hub, resulting in drop of stator performance, as well as a certain destructive effect on the flow field of the main passage.


Author(s):  
Ziliang Li ◽  
Xingen Lu ◽  
Ge Han ◽  
Yanfeng Zhang ◽  
Shengfeng Zhao ◽  
...  

Centrifugal compressors often suffer relatively low efficiency and a terrible operating range particularly due to the complex flow structure and intense impeller/diffuser interaction. Numerous studies have focused on improving the centrifugal compressor performance using many innovative ideas, such as the tandem impeller, which has become increasingly attractive due to its ability to achieve the flow control with no additional air supply configurations and control costs in compressor. However, few studies that attempted to the investigation of tandem impeller have been published until now and the results are always contradictory. To explore the potential of the tandem impeller to enhance the compressor performance and the underlying mechanism of the flow phenomena in the tandem impellers, this paper numerically investigated a high-pressure-ratio centrifugal compressor with several tandem impellers at off-design operating speeds. The results encouragingly demonstrate that the tandem impeller can achieve a performance enhancement over a wide range of operating conditions. Approximately 1.8% maximum enhancement in isentropic efficiency and 5.0% maximum enhancement in operating range are achieved with the inducer/exducer circumferential displacement of [Formula: see text] = 25% and 50%, respectively. The observed stage performance gain of the tandem impellers decreases when the operating speed increases due to the increased inducer shock, increased wake losses, and deteriorated tandem impeller discharge flow uniformity. In addition, the tandem impeller can extend the impeller operating range particularly at low rotation speeds, which is found to be a result from the suppression of the low-momentum fluid radial movement. The results also indicate that the maximum flux capacity of the tandem impeller decreases due to the restriction of the inducer airfoil Kutta–Joukowsky condition.


2019 ◽  
Vol 9 (16) ◽  
pp. 3416 ◽  
Author(s):  
T R Jebieshia ◽  
Senthil Kumar Raman ◽  
Heuy Dong Kim

The present study focuses on the aerodynamic performance and structural analysis of the centrifugal compressor impeller. The performance characteristics of the impeller are analyzed with and without splitter blades by varying the total number of main and splitter blades. The operating conditions of the compressor under centrifugal force and pressure load from the aerodynamic analysis are applied to the impeller blade and hub to perform the one-way Fluid–Structure Interaction (FSI). For the stress assessment, maximum equivalent von Mises stresses in the impeller blades are compared with the maximum allowable stress of the impeller material. The effects of varying the pressure field on the deformation and stress of the impeller are also calculated. The aerodynamic and structural performance of the centrifugal compressor at 73,000 rpm are investigated in terms of the efficiency, pressure ratio, equivalent von Mises stress, and total deformation of the impeller.


2013 ◽  
Vol 135 (4) ◽  
Author(s):  
Subenuka Sivagnanasundaram ◽  
Stephen Spence ◽  
Juliana Early ◽  
Bahram Nikpour

This paper describes an investigation of map width enhancement and a detailed analysis of the inducer flow field due to various bleed slot configurations and vanes in the annular cavity of a turbocharger centrifugal compressor. The compressor under investigation is used in a turbocharger application for a heavy duty diesel engine of approximately 400 hp. This investigation has been undertaken using a computational fluid dynamics (CFD) model of the full compressor stage, which includes a manual multiblock-structured grid generation method. The influence of the bleed slot flow on the inducer flow field at a range of operating conditions has been analyzed, highlighting the improvement in surge and choked flow capability. The impact of the bleed slot geometry variations and the inclusion of cavity vanes on the inlet incidence angle have been studied in detail by considering the swirl component introduced at the leading edge by the recirculating flow through the slot. Further, the overall stage efficiency and the nonuniform flow field at the inducer inlet have been also analyzed. The analysis revealed that increasing the slot width has increased the map width by about 17%. However, it has a small impact on the efficiency, due to the frictional and mixing losses. Moreover, adding vanes in the cavity improved the pressure ratio and compressor performance noticeably. A detail analysis of the compressor with cavity vanes has also been presented.


Author(s):  
Levi André B. Vigdal ◽  
Lars E. Bakken

The introduction of variable inlet guide vanes (VIGVs) upfront of a compressor stage affects performance and permits tuning for off-design conditions. This is of great interest for emerging technology related to subsea compression. Unprocessed gas from the wellhead will contain liquid condensate, which affects the operational condition of the compressor. To investigate the effect of guide vanes on volume flow and pressure ratio in a wet gas compressor, VIGVs are implemented upfront of a centrifugal compressor stage to control the inlet flow direction. The guide vane geometry and test rig setup have previous been presented. This paper documents how changing the VIGV setting affects compressor performance under dry and wet operating conditions. The reduced performance effect and operating range at increased liquid content are of specific interest. Also documented is the change in the VIGV effect relative to the setting angle.


2011 ◽  
Vol 133 (3) ◽  
Author(s):  
Lanxin Sun ◽  
Qun Zheng ◽  
Yijin Li ◽  
Rakesh Bhargava

The effects of wet compression on the flow field within a compressor stage, particularly in the presence of the separated flow region, are not fully understood. Numerical simulations of 3D compressible separated flows within a wet compression compressor stage are carried out using a computational fluid dynamics (CFD) program. Numerical computations of flow fields in a compressor cascade with wet compression assume that a separated region exist in the corner of the rotor blade suction surface and hub surface in the case of dry compression. Under different operating conditions and with wet compression, this study presents the changes in the extent of separated region on the flow channel surfaces, compression efficiency, pressure ratio and specific compression work, etc. Also, effects of factors such as droplet size, droplet temperature, and injected water flow rate on the compressor stage performance and flow field within compressor stage passage have been investigated. The results show that wet compression could weaken and eliminate the flow separation and then the efficiency and pressure ratio maintain a high level.


Author(s):  
Subenuka Sivagnanasundaram ◽  
Stephen Spence ◽  
Juliana Early ◽  
Bahram Nikpour

This paper describes an investigation of map width enhancement and a detailed analysis of the inducer flow field due to various bleed slot configurations and vanes in the annular cavity of a turbocharger centrifugal compressor. The compressor under investigation is used in a turbocharger application for a heavy duty diesel engine of approximately 400hp. This investigation has been undertaken using a CFD model of the full compressor stage which includes a manual multi-block structured grid generation method. The influence of the bleed slot flow on the inducer flow field at a range of operating conditions has been analysed, highlighting the improvement in surge and choked flow capability. The impact of the bleed slot geometry variations and the inclusion of cavity vanes on the inlet incidence angle have been studied in detail by considering the swirl component introduced at the leading edge by the recirculating flow through the slot. Further, the overall stage efficiency and the non-uniform flow field at the inducer inlet have been also analysed. The analysis revealed that increasing the slot width has increased the map width by about 17%. However, it has a small impact on the efficiency due to the frictional and mixing losses. Moreover, adding vanes in the cavity improved the pressure ratio and compressor performance noticeably. A detail analysis of the compressor with cavity vanes has also been presented.


Sign in / Sign up

Export Citation Format

Share Document