Mechansims for Wide-Chord Fan Blade Flutter

Author(s):  
Mehdi Vahdati ◽  
George Simpson ◽  
Mehmet Imregun

This paper describes a detailed wide-chord fan blade flutter analysis with emphasis on flutter bite. The same fan was used with three different intakes of increasing complexity to explain flutter mechanisms. Two types of flutter, namely stall flutter and acoustic flutter, were identified. The first intake is a uniform cylinder for which there are no acoustic reflections. Only stall flutter, driven by flow separation, can exist in this case. The second intake, based on the first one, has a ‘bump’ feature to reflect the fan’s forward pressure wave at a known location so that detailed parametric studies can be undertaken. The analysis revealed a mechanism for acoustic flutter, which is driven by the phase of the reflected wave. The third intake has the typical geometric features of a flight intake. The results indicate that flutter bite occurs when both stall and acoustic flutter happen at the same speed. It is also found that blade stiffening has no effect on aero-acoustic flutter.

2011 ◽  
Vol 133 (4) ◽  
Author(s):  
Mehdi Vahdati ◽  
George Simpson ◽  
Mehmet Imregun

This paper describes a detailed wide-chord fan blade flutter analysis with emphasis on flutter bite. The same fan was used with three different intakes of increasing complexity to explain flutter mechanisms. Two types of flutter, namely, stall and acoustic flutters, were identified. The first intake is a uniform cylinder, in which there are no acoustic reflections. Only the stall flutter, which is driven by flow separation, can exist in this case. The second intake, based on the first one, has a “bump” feature to reflect the fan’s forward pressure wave at a known location so that detailed parametric studies can be undertaken. The analysis revealed a mechanism for acoustic flutter, which is driven by the phase of the reflected wave. The third intake has the typical geometric features of a flight intake. The results indicate that flutter bite occurs when both stall and acoustic flutters happen at the same speed. It is also found that blade stiffening has no effect on aero-acoustic flutter.


2015 ◽  
Vol 137 (8) ◽  
Author(s):  
Mehdi Vahdati ◽  
Nigel Smith ◽  
Fanzhou Zhao

The main aim of this paper is to study the influence of upstream reflections on flutter of a fan blade. To achieve this goal, flutter analysis of a complete fan assembly with an intake duct and the downstream outlet guide vanes (OGVs) (whole low pressure (LP) domain) is undertaken using a validated computational fluid dynamics (CFD) model. The computed results show good correlation with measured data. Due to space constraints, only upstream (intake) reflections are analyzed in this paper. It will be shown that the correct prediction of flutter boundary for a fan blade requires modeling of the intake and different intakes would produce different flutter boundaries for the same fan blade. However, the “blade only” and intake damping are independent and the total damping can be obtained from the sum of the two contributions. In order to gain further insight into the physics of the problem, the pressure waves created by blade vibration are split into an upstream and a downstream traveling wave in the intake. The splitting of the pressure wave allows one to establish a relationship between the phase and amplitude of the reflected waves and flutter stability of the blade. By using this approach, a simple reflection model can be used to model the intake effects.


Author(s):  
Mehdi Vahdati ◽  
Nigel Smith ◽  
Fanzhou Zhao

The main aim of this paper is to study the influence of upstream reflections on flutter of a fan blade. To achieve this goal, flutter analysis of a complete fan assembly with an intake duct and the downstream OGVs (whole LP domain) is undertaken using a validated CFD model. The computed results show good correlation with measured data. Due to space constraints, only upstream (intake) reflections are analyzed in this paper. It will be shown that the correct prediction of flutter boundary for a fan blade requires modeling of the intake and different intakes would produce different flutter boundaries for the same fan blade. However, the ‘blade only’ and intake damping are independent and the total damping can be obtained from the sum of the two contributions. In order to gain further insight into the physics of the problem, the pressure waves created by blade vibration are split into an upstream and a downstream traveling wave in the intake. The splitting of the pressure wave allows one to establish a relationship between the phase and amplitude of the reflected waves and flutter stability of the blade. By using this approach, a simple reflection model can be used to model the intake effects.


1985 ◽  
Vol 107 (2) ◽  
pp. 394-398
Author(s):  
R. E. Kielb ◽  
K. R. V. Kaza

The purpose of the research presented in this paper is to study the effect of sweep on fan blade flutter by applying the analytical methods developed for aeroelastic analysis of advanced turboprops. Two methods are used. The first method utilizes an approximate structural model in which the blade is represented by a swept, nonuniform beam. The second method utilizes a finite element technique to conduct modal flutter analysis. For both methods, the unsteady aerodynamic loads are calculated using two-dimensional cascade theories that are modified to account for sweep. An advanced fan stage is analyzed with 0, 15, and 30 deg of sweep. It is shown that sweep has a beneficial effect on predominantly torsional flutter and a detrimental effect on predominantly bending flutter. This detrimental effect is shown to be significantly destabilizing for 30 deg of sweep.


Author(s):  
X. Wu ◽  
M. Vahdati ◽  
A. I. Sayma ◽  
M. Imregun

This paper reports the results of an ongoing research effort to explain the underlying mechanisms for aeroacoustic fan blade flutter. Using a 3D integrated aeroelasticity method and a single passage blade model that included a representation of the intake duct, the pressure rise vs. mass flow characteristic of a fan assembly was obtained for the 60%–80% speed range. A novel feature was the use of a downstream variable-area nozzle, an approach that allowed the determination of the stall boundary with good accuracy. The flutter stability was predicted for the 2 nodal diameter assembly mode arising from the first blade flap mode. The flutter margin at 64% speed was predicted to drop sharply and the instability was found to be independent of stall effects. On the other hand, the flutter instability at 74% speed was found to be driven by flow separation. Further post-processing of the results at 64% speed indicated significant unsteady pressure amplitude build-up inside the intake at the flutter condition, thus highlighting the link between the acoustic properties of the intake duct and fan blade flutter.


1975 ◽  
Vol 12 (4) ◽  
pp. 325-332 ◽  
Author(s):  
A. A. Mikolajczak ◽  
R. A. Arnoldi ◽  
L. E. Snyder ◽  
H. Stargardter

1990 ◽  
Vol 112 (4) ◽  
pp. 768-777 ◽  
Author(s):  
H. Kobayashi

Low back-pressure supersonic fan blade flutter in the torsional mode was examined using a controlled-oscillating annular cascade test facility. Precise data of unsteady aerodynamic forces generated by shock wave movement, due to blade oscillation, and the previously measured data of chordwise distributions of unsteady aerodynamic forces acting on an oscillating blade, were joined and, then, the nature of cascade flutter was evaluated. These unsteady aerodynamic forces were measured by direct and indirect pressure measuring methods. Our experiments covered a range of reduced frequencies based on a semichord from 0.0375 to 0.547, six interblade phase angles, and inlet flow velocities from subsonic to supersonic flow. The occurrence of unstalled cascade flutter in relation to reduced frequency, interblade phase angle, and inlet flow velocity was clarified, including the role of unsteady aerodynamic blade surface forces on flutter. Reduced frequency of the flutter boundary increased greatly when the blade suction surface flow became transonic flow. Interblade phase angles that caused flutter were in the range from 40 to 160 deg for flow fields ranging from high subsonic to supersonic. Shock wave movement due to blade oscillation generated markedly large unsteady aerodynamic forces which stimulated blade oscillation.


1973 ◽  
Vol 10 (1) ◽  
pp. 5-13 ◽  
Author(s):  
Lars E. Ericsson ◽  
J. Peter Reding

Author(s):  
Mădălina Lupșe ◽  
Bogdan-Vasile Cioruța ◽  
Alexandru Leonard Pop

The development of mathematical skills, especially those specific to geometry, for the primary cycle is a triple challenge in the current context of education in Romania. The first of the challenges is given by the fact that classical education, but also the online one, has become an activity, still unstructured, concerning movements, decisions, and political pressures, implicitly with the changes that occurred in the ministerial apparatus. The second challenge is given by the methodological changes and of the school curriculum, which comes as a completion of the first challenge, being felt even in the teaching-learning-evaluation specific to geometry. The third challenge is given by the weight that teachers face in making geometry a discipline that appeals to students, attractive. In this sense, the challenge for us is to show that this triple barrier can be overcome. As such, the present study proposes a mixed method of presenting the geometric contents in the classroom for the preparatory group, class I and II, through the prism of the instruments offered by the Romanian thematic philately. The results of the study are presented in the form of worksheets, of which we present only fragments to summarize the possibilities arising from the association of thematic philately with notions of geometry.


2019 ◽  
Vol 141 (10) ◽  
Author(s):  
Q. Rendu ◽  
M. Vahdati ◽  
L. Salles

Abstract This paper investigates the three dimensionality of the unsteady flow responsible for stall flutter instability. Nonlinear unsteady Reynolds-averaged Navier–Stokes (RANS) computations are used to predict the aeroelastic behavior of a fan blade at part speed. Flutter is experienced by the blades at low mass flow for the first flap mode at nodal diameter 2. The maximal energy exchange is located near the tip of the blade, at 90% span. The modeshape is radially decomposed to investigate the main source of instability. This decomposition method is validated for the first time in 3D using a time-marching nonlinear solver. The source of stall flutter is finally found at 65% span where the local vibration induces an unstable oscillation of the shock-wave of large amplitude. This demonstrates that the radial migration of the pressure fluctuations must be taken into account to predict stall flutter.


Sign in / Sign up

Export Citation Format

Share Document