Measurements of Endwall Flows in Transonic Linear Turbine Cascades: Part I—Low Flow Turning

Author(s):  
F. Taremi ◽  
S. A. Sjolander ◽  
T. J. Praisner

The current two part paper presents the results of an experimental investigation of the endwall flows in four transonic linear turbine cascades with two levels of flow turning: 90° and 112° of total flow turning, respectively. For each case, two levels of aerodynamic loading were examined. Part I of the paper examines the low-turning case. A seven-hole pressure probe was used to document the flow fields downstream of the cascades. The experimental results include blade surface pressure distributions, total pressure losses, secondary kinetic energy and streamwise vorticity distributions. The turbine cascades considered in Part I are referred to as SL3F and SL4F (exit Mach number ≈ 0.8). The airfoils have the same inlet and outlet design flow angles, but different aerodynamic loading levels: SL4F has a Zweifel coefficient that is 30% higher than that for SL3F. The midspan flow measurements indicate that SL4F produces higher profile losses than SL3F. SL4F also exhibits stronger secondary flow with larger exit flow-angle variations. Consequently, SL4F produces higher secondary losses. Growth of secondary losses has been documented by collecting additional measurements downstream of the SL3F cascade. Vortex dissipation and endwall boundary layer growth result in additional secondary losses. The loss coefficients and the secondary flow parameters are integrated over the entire measurement plane to present their individual contributions to total entropy generation. In this context, the profile and secondary loss results from two different loss-breakdown schemes are presented and compared. The treatment of near-endwall losses in the absence of detailed pressure probe results is also discussed here.

1987 ◽  
Vol 109 (2) ◽  
pp. 186-193 ◽  
Author(s):  
A. Yamamoto

The present study intends to give some experimental information on secondary flows and on the associated total pressure losses occurring within turbine cascades. Part 1 of the paper describes the mechanism of production and development of the loss caused by secondary flows in a straight stator cascade with a turning angle of about 65 deg. A full representation of superimposed secondary flow vectors and loss contours is given at fourteen serial traverse planes located throughout the cascade. The presentation shows the mechanism clearly. Distributions of static pressures and of the loss on various planes close to blade surfaces and close to an endwall surface are given to show the loss accumulation process over the surfaces of the cascade passage. Variation of mass-averaged flow angle, velocity and loss through the cascade, and evolution of overall loss from upstream to downstream of the cascade are also given. Part 2 of the paper describes the mechanism in a straight rotor cascade with a turning angle of about 102 deg.


1995 ◽  
Vol 117 (4) ◽  
pp. 602-608 ◽  
Author(s):  
A. Pinarbasi ◽  
M. W. Johnson

Detailed measurements have been taken of the three-dimensional velocity field within the vaneless diffuser of a backswept low speed centrifugal compressor using hot-wire anemometry. A 16 percent below and an 11 percent above design flow rate were used in the present study. Results at both flow rates show how the blade wake mixes out more rapidly than the passage wake. Strong secondary flows inherited from the impeller at the higher flow rate delay the mixing out of the circumferential velocity variations, but at both flow rates these circumferential variations are negligible at the last measurement station. The measured tangential/radial flow angle is used to recommend optimum values for the vaneless space and vane angle for design of a vaned diffuser.


Author(s):  
G. D. MacIsaac ◽  
S. A. Sjolander ◽  
T. J. Praisner ◽  
E. A. Grover ◽  
R. Jurek

Incorporating the platform overlap and endwall cavity into the early stages of turbine CFD analyses is desirable from the perspective of accurately capturing the near endwall flow features. However, the overlap and cavity geometry increase the complexity of the computational domain making CFD meshes more difficult to generate and the CFD solutions more resource intensive. Thus, geometric approximations are often made to simplify the CFD analysis. This paper examines, experimentally, the secondary flows of a linear turbine cascade with three different platform overlap geometries, two of which incorporate geometric simplifications. These are then compared with the corresponding computations. Experimental measurements were collected using a seven-hole pressure probe at a plane located 40% of the axial chord downstream of the trailing edge. Steady-state computational predictions were performed using ANSYS CFX 12.0 and employed the SST transition turbulence model. The experimental results show that the presence of an upstream rim-seal creates a stronger passage vortex, relative to a flat endwall, resulting in larger integrated losses as well as higher levels of secondary kinetic energy and streamwise vorticity. Subtle differences in the strength of the passage vortex and the associated losses are observed for the simplified geometries in both the measured and predicted results. By examining the details of the cavity flow, a recirculation zone is identified which energizes the formation of the passage vortex. The effect of the recirculation zone may be attenuated or intensified by the rim-seal geometry. The paper concludes by addressing the validity and usefulness of the proposed platform overlap simplifications in design-oriented computations.


Author(s):  
J. F. Carrotte ◽  
K. F. Young ◽  
S. J. Stevens

A series of tests have been carried out to investigate the flow in a Compressor Outlet Guide Vane (OGV) blade row downstream of a single stage rotor. The subsequent flow field that developed within an OGV passage was measured, at intervals of 10% axial chord, using a novel design of miniature 5 hole pressure probe. In addition to indicating overall pressure levels and the growth of regions containing low energy fluid, secondary flow features were identified from calculated axial vorticity contours and flow vectors. Close to each casing the development of classical secondary flow was observed, but towards the centre of the annulus large well defined regions of opposite rotation were measured. These latter flows were due to the streamwise vorticity at inlet to the blade row associated with the skewed inlet profile. Surface static pressures were also measured and used to obtain the blade pressure force at 3 spanwise locations. These values were compared with the local changes in flow momentum calculated from the measured velocity distributions. With the exception of the flow close to the outer casing, which is affected by rotor tip leakage, good agreement was found between these quantities indicating relatively weak radial mixing.


Processes ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1595
Author(s):  
Yong-In Kim ◽  
Yong-Uk Choi ◽  
Cherl-Young Jeong ◽  
Kyoung-Yong Lee ◽  
Young-Seok Choi

This study was based on a numerical effort to use the motor support (prop) as a guide vane when the motor of a wall-mounted axial fan was located at the fan outlet while maintaining the structural and spatial advantage. The design for the guide vane followed two- and three-dimensional methods. The inlet vane angle, meridional length (total), and meridional length with a vane angle of zero (0) degrees (linear) were considered as design variables. At the design and some low flow rate points, the 2D design offered the most favorable performance when the meridional length with a vane angle of zero (0) degrees (linear) was 30% based on total length, and was the worst for 70%. The 3D design method applied in this study did not outperform the 2D design. In the 2D design concept, averaging the flow angle for the entire span at the design flow rate could ensure a better pressure rise over a more comprehensive flow rate range than weighting the flow angle for a specific span. In addition, the numerical results were validated through an experimental test, with an important discussion of the swirl (dynamic pressure) component. The influence of the inlet motor and turbulence model are presented as a previous confirmation.


1990 ◽  
Vol 112 (1) ◽  
pp. 91-97 ◽  
Author(s):  
A. Boccazzi ◽  
A. Perdichizzi ◽  
U. Tabacco

The results of an experimental investigation of the flow field within a low-solidity inducer at design and off-design flow rates are presented and discussed; particular attention is devoted to the analysis of the flow field, at the tip in front of the leading edge, for the flow rate close to the back-flow onset. The flow field was measured by means of a laser-Doppler velocimeter at four different axial positions upstream, within, and downstream of the inducer. Axial, tangential, and relative flow angle distributions, in the measuring planes, are presented for three different flow coefficients. At the lower flow rate, the plots show the presence of reverse flow in the region close to the hub downstream of the trailing edge. For the same flow rate, quite low axial velocities are detected at the tip. This is in agreement with pressure probe traverses carried out in a slightly downstream section; these measurements also show radial inward velocities of the same order of magnitude as the axial velocities. Circumferentially averaged losses were evaluated from specific work and total head rise given by pressure probes.


1995 ◽  
Vol 117 (1) ◽  
pp. 29-37 ◽  
Author(s):  
J. F. Carrotte ◽  
K. F. Young ◽  
S. J. Stevens

A series of tests have been carried out to investigate the flow in a Compressor Outlet Guide Vane (OGV) blade row downstream of a single-stage rotor. The subsequent flow field that developed within an OGV passage was measured, at intervals of 10 percent axial chord, using a novel design of miniature five-hole pressure probe. In addition to indicating overall pressure levels and the growth of regions containing low-energy fluid, secondary flow features were identified from calculated axial vorticity contours and flow vectors. Close to each casing the development of classical secondary flow was observed, but toward the center of the annulus large well-defined regions of opposite rotation were measured. These latter flows were due to the streamwise vorticity at inlet to the blade row associated with the skewed inlet profile. Surface static pressures were also measured and used to obtain the blade pressure force at three spanwise locations. These values were compared with the local changes in flow momentum calculated from the measured velocity distributions. With the exception of the flow close to the outer casing, which is affected by rotor tip leakage, good agreement was found between these quantities indicating relatively weak radial mixing.


Author(s):  
A. Yamamoto

The present study intends to give some experimental information on secondary flows and on the associated total pressure losses occurring within turbine cascades. Part 1 of the paper describes the mechanism of production and development of the loss caused by secondary flows in a straight stator cascade with a turning angle of about 65°. A full representation of superimposed secondary flow vectors and loss contours is given at serial fourteen traverse planes located throughout the cascade, which shows the mechanism clearly. Distributions of static pressures and of the loss on various planes close to blade surfaces and close to an endwall surface are given to show the loss accumulation process over the surfaces of the cascade passage. Variation of mass-averaged flow angle, velocity and loss through the cascade, and evolution of overall loss from upstream to downstream of the cascade are also given. Part 2 of the paper describes the mechanism in a straight rotor cascade with a turning angle of about 102°.


2012 ◽  
Vol 134 (5) ◽  
Author(s):  
H. M. Abo El Ella ◽  
S. A. Sjolander ◽  
T. J. Praisner

This paper examines experimentally the effects of an upstream cavity on the flow structures and secondary losses in a transonic linear turbine cascade. The cavity approximates the endwall geometry resulting from the platform overlap at the interface between stationary and rotating turbine blade rows. Previous investigations of the effects of upstream cavity geometries have been conducted mainly at low-speed conditions. The present work aims to extend such research into the transonic regime with a more engine representative upstream platform geometry. The investigations were carried out in a blow-down type wind tunnel. The cavity is located at 30 % of axial chord from the leading edge, extends 17 % of axial-chord in depth, and is followed by a smooth ramp to return the endwall to its nominal height. Two cascades are examined for the same blade geometry: the baseline cascade with a flat endwall and the cascade with the cavity endwall. Measurements were made at the design incidence and the outlet design Mach number of 0.80. At this condition, the Reynolds number based on outlet velocity is about 600,000. Off-design outlet Mach numbers of 0.69, and 0.89 were also investigated. Flowfield measurements were carried out at 40 % axial-chord downstream of the trailing edge, using a seven-hole pressure probe, to quantify losses and identify the flow structures. Additionally, surface flow visualization using an ultra-violet reactive dye was employed at the design Mach number, on the endwall and blade surfaces, to help in the interpretation of the flow physics. The experimental results also include blade-loading distributions, and the probe measurements were processed to obtain total-pressure loss coefficients, and streamwise vorticity distributions. It was found that the presence of the upstream cavity noticeably altered the structure and the strength of the secondary flow. Some effect on the secondary losses was also evident, with the cavity having a larger effect at the higher Mach number.


2005 ◽  
Vol 127 (1) ◽  
pp. 209-214 ◽  
Author(s):  
Grant Ingram ◽  
David Gregory-Smith ◽  
Neil Harvey

A novel secondary flow feature, previously unreported for turbine blading as far as the authors are aware, has been discovered. It has been found that it is possible to separate part of the inlet boundary layer on the blade row end wall as it is being over-turned and rolled up into the passage vortex. This flow feature has been discovered during a continuing investigation into the aerodynamic effects of non-axisymmetric end wall profiling. Previous work, using the low speed linear cascade at Durham University, has shown the potential of end wall profiling for reducing secondary losses. The latest study, the results of which are described here, was undertaken to determine the limits of what end wall profiling can achieve. The flow has been investigated in detail with pressure probe traversing and surface flow visualization. This has found that the inlet boundary locally separates, on the early suction side of the passage, generating significant extra loss which feeds directly into the core of the passage vortex. The presence of this new feature gives rise to the unexpected result that the secondary flow, as determined by the exit flow angle deviations and levels of secondary kinetic energy, can be reduced while at the same time the loss is increased. CFD was found to calculate the secondary flows moderately well compared with measurements. However, CFD did not predict this new feature, nor the increase in loss it caused. It is concluded that the application of non-axisymmetric end wall profiling, although it has been shown to be highly beneficial, can give rise to adverse features that current CFD tools are unable to predict. Improvements to CFD capability are required in order to be able to avoid such features, and obtain the full potential of end wall profiling.


Sign in / Sign up

Export Citation Format

Share Document