Heat Transfer Performance of Fan-Shaped Film Cooling Holes: Part II—Numerical Analysis

Author(s):  
C. Bianchini ◽  
B. Facchini ◽  
L. Mangani ◽  
M. Maritano

Fan-shaped holes are widely used to provide better cooling performances than cylindrical holes over a large range of different operating conditions. Main advantages of such solution include a reduced amount of cooling air for the same performance, increased part lifetime and fewer required holes. As the overall cooling performance of such holes is strictly related to the adiabatic effectiveness and heat transfer coefficient (HTC) increase due to the coolant injection, both issues should be investigated. A numerical analysis has been conducted on a laidback fan-shaped film cooling hole onto a flat plate with the aim of investigating the increase of heat transfer. A steady-state RANS analysis was performed at two different blowing ratios (1.25 and 2.5) with imposed heat flux on the heated wall reproducing the same conditions as in the experimental tests presented in the companion paper. Despite no temperature difference was imposed between main gas and coolant flow, adiabatic effectiveness maps were extracted from tracing distribution over the plate. Performances of four different eddy viscosity turbulence models have been tested: the Two-Layer model by Rodi both in the isotropic original formulation and with an anisotropic algebraic correction based on DNS data fitting as firstly proposed by Lakheal, the k–ω SST by Menter and the ν2–f by Durbin. All calculations were conducted with a 3D unstructured pressure-based compressible solver based on the open-source OpenFOAM® CFD platform. A detailed analysis of both the predicted flow field and thermal distribution in the domain was presented. The obtained results were compared with the experimental measurements showed in the companion paper both in terms of wall heat transfer coefficient and adiabatic effectiveness.

Author(s):  
Katharine L. Harrison ◽  
David G. Bogard

The realizable k-ε, standard k-ω, and RSM turbulence models were used to simulate flat plate film cooling experiments that are commonly described in literature. Adiabatic effectiveness simulations revealed that using the standard k-ω model resulted in the closest agreement with experimentally determined laterally averaged adiabatic effectiveness, but the worst agreement with centerline adiabatic effectiveness. Conversely, the realizable k-ε model agreed worst with experimental laterally averaged adiabatic effectiveness values and best with centerline values. Use of the anisotropic RSM model was not found to predict more realistic coolant spreading than the other models. Simulations to find heat transfer coefficients without film cooling showed good agreement with correlations for all three models, and the closest agreement resulted from using the realizable k-ε model. Heat transfer coefficient augmentation was also examined for two configurations: unit density ratio with and without upstream heating. Laterally averaged heat transfer coefficient augmentation simulations using all three turbulence models agreed well with experiments. However, the spanwise variation in heat transfer coefficient augmentation in all cases was greater than is typically seen experimentally.


Author(s):  
Vijay K. Garg ◽  
Ali A. Ameri

A three-dimensional Navier-Stokes code has been used to compute the heat transfer coefficient on two film-cooled turbine blades, namely the VKI rotor with six rows of cooling holes including three rows on the shower head, and the C3X vane with nine rows of holes including five rows on the shower head. Predictions of heat transfer coefficient at the blade surface using three two-equation turbulence models, specifically, Coakley’s q-ω model, Chien’s k-ε model and Wilcox’s k-ω model with Menter’s modifications, have been compared with the experimental data of Camci and Arts (1990) for the VKI rotor, and of Hylton et al. (1988) for the C3X vane along with predictions using the Baldwin-Lomax (B-L) model taken from Garg and Gaugler (1995). It is found that for the cases considered here the two-equation models predict the blade heat transfer somewhat better than the B-L model except immediately downstream of the film-cooling holes on the suction surface of the VKI rotor, and over most of the suction surface of the C3X vane. However, all two-equation models require 40% more computer core than the B-L model for solution, and while the q-ω and k-ε models need 40% more computer time than the B-L model, the k-ω model requires at least 65% more time due to slower rate of convergence. It is found that the heat transfer coefficient exhibits a strong spanwise as well as streamwise variation for both blades and all turbulence models.


Author(s):  
Vinod U. Kakade ◽  
Steven J. Thorpe ◽  
Miklós Gerendás

The thermal management of aero gas turbine engine combustion systems commonly employs effusion-cooling in combination with various cold-side convective cooling schemes. The combustor liner incorporates many small holes which are usually set in staggered arrays and at a shallow angle to the cooled surface; relatively cold compressor delivery air is then allowed to flow through these holes to provide the full-coverage film-cooling effect. The efficient design of such systems requires robust correlations of film-cooling effectiveness and heat transfer coefficient at a range of aero-thermal conditions, and the use of appropriately validated computational models. However, the flow conditions within a combustor are characterised by particularly high turbulence levels and relatively large length scales. The experimental evidence for performance of effusion-cooling under such flow conditions is currently sparse. The work reported here is aimed at quantifying typical effusion-cooling performance at a range of combustor relevant free-stream conditions (high turbulence), and also to assess the importance of modeling the coolant to free-stream density ratio. Details of a new laboratory wind-tunnel facility for the investigation of film-cooling at high turbulence levels are reported. For a typical combustor effusion geometry that uses cylindrical holes, spatially resolved measurements of adiabatic effectiveness, heat transfer coefficient and net heat flux reduction are presented for a range of blowing ratios (0.48 to 2), free-stream turbulence conditions (4 and 22%) and density ratios (0.97 and 1.47). The measurements reveal that elevated free-stream turbulence impacts on both the adiabatic effectiveness and heat transfer coefficient, although this is dependent upon the blowing ratio being employed and particularly the extent to which the coolant jets detach from the surface. At low blowing ratios the presence of high turbulence levels causes increased lateral spreading of the coolant adjacent to the injection points, but more rapid degradation in the downstream direction. At high blowing ratios, high turbulence levels cause a modest increase in effectiveness due to turbulent transport of the detached coolant fluid. Additionally, the augmentation of heat transfer coefficient caused by the coolant injection is seen to be increased at high free-stream turbulence levels.


Author(s):  
Joshua B. Anderson ◽  
John W. McClintic ◽  
David G. Bogard ◽  
Thomas E. Dyson ◽  
Zachary Webster

The use of compound-angled shaped film cooling holes in gas turbines provides a method for cooling regions of extreme curvature on turbine blades or vanes. These configurations have received surprisingly little attention in the film cooling literature. In this study, a row of laid-back fanshaped holes based on an open-literature design, were oriented at a 45-degree compound angle to the approaching freestream flow. In this study, the influence of the approach flow boundary layer thickness and character were experimentally investigated. A trip wire and turbulence generator were used to vary the boundary layer thickness and freestream conditions from a thin laminar boundary layer flow to a fully turbulent boundary layer and freestream at the hole breakout location. Steady-state adiabatic effectiveness and heat transfer coefficient augmentation were measured using high-resolution IR thermography, which allowed the use of an elevated density ratio of DR = 1.20. The results show adiabatic effectiveness was generally lower than for axially-oriented holes of the same geometry, and that boundary layer thickness was an important parameter in predicting effectiveness of the holes. Heat transfer coefficient augmentation was highly dependent on the freestream turbulence levels as well as boundary layer thickness, and significant spatial variations were observed.


Author(s):  
Donald L. Schmidt ◽  
David G. Bogard

A flat plate test section was used to study how high free-stream turbulence with large turbulence length scales, representative of the turbine environment, affect the film cooling adiabatic effectiveness and heat transfer coefficient for a round hole film cooling geometry. This study also examined cooling performance with combined high free-stream turbulence and a rough surface which simulated the roughness representative of an in-service turbine. The injection was from a single row of film cooling holes with injection angle of 30°. The density ratio of the injectant to the mainstream was 2.0 for the adiabatic effectiveness tests, and 1.0 for the heat transfer coefficient tests. Streamwise and lateral distributions of adiabatic effectiveness and heat transfer coefficients were obtained at locations from 2 to 90 hole diameters downstream. At small to moderate momentum flux ratios, which would normally be considered optimum blowing conditions, high free-stream turbulence dramatically decreased adiabatic effectiveness. However, at large momentum flux ratios, conditions for which the film cooling jet would normally be detached, high free-stream turbulence caused an increase in adiabatic effectiveness. The combination of high free-stream turbulence with surface roughness resulted in an increase in adiabatic effectiveness relative to the smooth wall with high free-stream turbulence. Heat transfer rates were relatively unaffected by a film cooling injection. The key result from this study was a substantial increase in the momentum flux ratios for maximum film cooling performance which occurred for high free-stream turbulence and surface roughness conditions which are more representative of actual turbine conditions.


Author(s):  
Vijay K. Garg ◽  
Raymond E. Gaugler

An existing three-dimensional Navier-Stokes code (Arnone et al., 1991), modified to include film cooling considerations (Garg and Gaugler, 1994), has been used to study the effect of spanwise pitch of shower-head holes and coolant to mainstream mass flow ratio on the adiabatic effectiveness and heat transfer coefficient on a film-cooled turbine vane. The mainstream is akin to that under real engine conditions with stagnation temperature = 1900 K and stagnation pressure = 3 MPa. It is found that with the coolant to mainstream mass flow ratio fixed, reducing P, the spanwise pitch for shower-head holes, from 7.5 d to 3.0 d, where d is the hole diameter, increases the average effectiveness considerably over the blade surface. However, when P/d = 7.5, increasing the coolant mass flow increases the effectiveness on the pressure surface but reduces it on the suction surface due to coolant jet lift-off. For P/d = 4.5 or 3.0, such an anomaly does not occur within the range of coolant to mainstream mass flow ratios analyzed. In all cases, adiabatic effectiveness and heat transfer coefficient are highly three-dimensional.


Author(s):  
Renzo La Rosa ◽  
Jaideep Pandit ◽  
Wing Ng ◽  
Brett Barker

Abstract Heat transfer experiments were done on a flat plate to study the effect of internal counter-flow backside cooling on adiabatic film cooling effectiveness and heat transfer coefficient. In addition, the effects of density ratio (DR), blowing ratio (BR), diagonal length over diameter (L/D) ratio, and Reynolds number were studied using this new configuration. The results are compared to a conventional plenum fed case. Data were collected up to X/D = 23 where X = 0 at the holes, an S/D = 1.65 and L/D = 1 and 2. Testing was done at low L/D ratios since short holes are normally found in double wall cooling applications in turbine components. A DR of 2 was used in order to simulate engine-like conditions and this was compared to a DR of 0.92 since relevant research is done at similar low DR. The BR range of 0.5 to 1.5 was chosen to simulate turbine conditions as well. In addition, previous research shows that peak effectiveness is found within this range. Infrared (IR) thermography was used to capture temperature contours on the surface of interest and the images were calibrated using a thermocouple and data analyzed through MATLAB software. A heated secondary fluid was used as ‘coolant’ in the present study. A steady state heat transfer model was used to perform the data reduction procedure. Results show that backside cooling configuration has a higher adiabatic film cooling effectiveness when compared to plenum fed configurations at the same conditions. In addition, the trend for effectiveness with varying BR is reversed when compared with traditional plenum fed cases. Yarn flow visualization tests show that flow exiting the holes in the backside cooling configuration is significantly different when compared to flow exiting the plenum fed holes. We hypothesize that backside cooling configuration has flow exiting the holes in various directions, including laterally, and behaving similar to slot film cooling, explaining the differences in trends. Increasing DR at constant BR shows an increase in adiabatic effectiveness and HTC in both backside cooling and plenum fed configurations due to the decreased momentum of the coolant, making film attachment to the surface more probable. The effects of L/D ratio in this study were negligible since both ratios used were small. This shows that the coolant flow is still underdeveloped at both L/D ratios. The study also showed that increasing turbulence through increasing Reynolds number decreased adiabatic effectiveness.


Author(s):  
James L. Rutledge ◽  
Jonathan F. McCall

Traditional hot gas path film cooling characterization involves the use of wind tunnel models to measure the spatial adiabatic effectiveness (η) and heat transfer coefficient (h) distributions. Periodic unsteadiness in the flow, however, causes fluctuations in both η and h. In this paper we present a novel inverse heat transfer methodology that may be used to approximate the η(t) and h(t) waveforms. The technique is a modification of the traditional transient heat transfer technique that, with steady flow conditions only, allows the determination of η and h from a single experiment by measuring the surface temperature history as the material changes temperature after sudden immersion in the flow. However, unlike the traditional transient technique, this new algorithm contains no assumption of steadiness in the formulation of the governing differential equations for heat transfer into a semi-infinite slab. The technique was tested by devising arbitrary waveforms for η and h at a point on a film cooled surface and running a computational simulation of an actual experimental model experiencing those flow conditions. The surface temperature history was corrupted with random noise to simulate actual surface temperature measurements and then fed into an algorithm developed here that successfully and consistently approximated the η(t) and h(t) waveforms.


1995 ◽  
Vol 117 (3) ◽  
pp. 474-484 ◽  
Author(s):  
T. Bo ◽  
H. Iacovides ◽  
B. E. Launder

A numerical study of developing flow through a heated duct of square cross section rotating in orthogonal mode is reported. The two main aims are to explore the effects of rotational buoyancy on the flow development and to assess the ability of available turbulence models to predict such flows. Two test cases have been computed corresponding to values of the rotation number, Ro, of 0.12 and 0.24, which are typical of operating conditions in internal cooling passages of gas turbine blades. Computations from three turbulence models are presented: a k–ε eddy viscosity (EVM) model matched to a low-Reynolds-number one-equation EVM in the near-wall region; a low-Re k–ε EVM and a low-Re algebraic stress model (ASM). Additional computations in which the fluid density is assumed to remain constant allow the distinct contributions from buoyancy and Coriolis forces to be separated. It is thus shown that rotational buoyancy can have a substantial influence on the flow development and that, in the case of outward flow, it leads to a considerable increase of the side-averaged heat transfer coefficient. The Coriolis-induced secondary motion leads to an augmentation of the mean heat transfer coefficient on the pressure surface and a reduction on the suction side. The k–ε/one-equation EVM produces a mostly reasonable set of heat transfer predictions, but some deficiencies do emerge at the higher rotation number. In contrast, predictions with the low-Re k–ε EVM return a spectacularly unrealistic behavior while the low-Re ASM thermal predictions are in encouragingly close agreement with available measurements.


Sign in / Sign up

Export Citation Format

Share Document