On Remaining Life Analysis of Turbine Disks Subjected to High Thermal Stresses

Author(s):  
Vishwas Iyengar ◽  
Stephen James ◽  
Harold Simmons

Disk failures can be caused by a number of mechanisms under the turbine operating conditions of high rotational speed at elevated temperatures. It is not uncommon for highly stressed turbine blades and disks to operate at temperatures in excess of 1,000°F, where increased exposure can affect their life. In the past, it has been adequate to analyze the life of these high temperature components using methods which calculate creep life and low cycle fatigue life independently in predicting service hours. More often than not, the parameters included in the creep life model are based on empirical data. Here, a practical methodology is presented to predict the remaining life of a turbine disk that utilizes a combination of Computational Fluid Dynamics (CFD), Finite Element Analysis (FEA) and a creep model. A full three-dimensional CFD analysis is performed on the turbine disks at design and off-design conditions, in order to accurately capture the thermal loads. A detailed FEA is performed on the turbine disk. The stress inputs for the creep life model are based on the stresses obtained from the FEA. A case study is presented that utilizes the proposed methodology. It is found that the methodology is beneficial for the remaining life analysis on highly loaded turbine disks. The accuracy of the methodology is somewhat dictated by the amount of historical operating data that is available.

Author(s):  
S. Eshati ◽  
M. F. Abdul Ghafir ◽  
P. Laskaridis ◽  
Y. G. Li

This paper investigates the relationship between design parameters and creep life consumption of stationary gas turbines using a physics based life model. A representative thermodynamic performance model is used to simulate engine performance. The output from the performance model is used as an input to the physics based model. The model consists of blade sizing model which sizes the HPT blade using the constant nozzle method, mechanical stress model which performs the stress analysis, thermal model which performs thermal analysis by considering the radial distribution of gas temperature, and creep model which using the Larson-miller parameter to calculate the lowest blade creep life. The effect of different parameters including radial temperature distortion factor (RTDF), material properties, cooling effectiveness and turbine entry temperatures (TET) is investigated. The results show that different design parameter combined with a change in operating conditions can significantly affect the creep life of the HPT blade and the location along the span of the blade where the failure could occur. Using lower RTDF the lowest creep life is located at the lower section of the span, whereas at higher RTDF the lowest creep life is located at the upper side of the span. It also shows that at different cooling effectiveness and TET for both materials the lowest blade creep life is located between the mid and the tip of the span. The physics based model was found to be simple and useful tool to investigate the impact of the above parameters on creep life.


Author(s):  
Lakshman Kasina ◽  
Raghavan Kotur ◽  
Govindaraji Gnanasundaram

The aero engine rotating parts are always fracture critical components and their failure in service affects the aircraft safety. Rotors / disks will burst at a certain speed if they operate at ever-increasing speed. Rotor burst is one of important failure mode in aero engine and resulting in disk disintegration into multiple fragments with high speed resulting in containment breach. Disks are subjected to fatigue loading and it limits the service life. Fatigue loading on disk includes high temperature environment, tremendous centrifugal and aerodynamic forces caused by blades. The main aspect of turbine disk design is to safe guard against LCF failure. Design of disk should ensure that stresses due to thermal, centrifugal and aerodynamics loads during operating conditions should be within the limits. Turbine disks are also designed to operate at speed above 20% of maximum operating speed for maximum power and referred as over speed capability or burst margin. This over speed capability may require for the aircraft during emergency conditions. The objective of this study is to design a turbine disk for minimum weight. A numerical investigation is performed to predict stresses and burst margins of turbine disk. A parametric disk model is developed with bore width, bore height, web width and web height parameters. Optimization of turbine disk design is carried out to achieve minimum weight. Sensitivity studies are carried out to understand the geometry parameters influence on the stress and burst margins.


Author(s):  
Carl E. Jaske ◽  
Brian E. Shannon ◽  
Gustavo Miranda ◽  
Thomas J. Prewitt

Statoil Tjelbergodden operates a 2,400 ton/day methanol plant in Norway. Part 1 of this paper described the advanced non-destructive examination (NDE) technologies that were applied to obtain data for engineering evaluation of radiant catalyst tubes, outlet pigtails, and outlet collection headers. The inspection results were compiled along with data on materials properties and plant operating conditions for use in a series of life prediction studies. This paper describes the assessment methodologies that were applied in evaluating the remaining life of the in-service components. The special purpose WinTUBE™ finite element software was applied to predict remaining catalyst tube creep life based on the computed creep stress-strain response and creep damage accumulation under simulated future operating conditions. Outlet headers and pigtails were modeled using general purpose finite element software to compute stresses and strains during operation. Following the methodology of API 579-1/ASME FFS-1 the computed stresses and strains were used to predict remaining creep life. Using the remaining life estimates to decrease the potential of in-service failures and increase the reliability of future reformer operations is discussed.


2017 ◽  
Vol 38 (1) ◽  
pp. 25-30
Author(s):  
Yan-Feng Li ◽  
Zhisheng Zhang ◽  
Chenglin Zhang ◽  
Jie Zhou ◽  
Hong-Zhong Huang

Abstract This paper deals with the creep characteristics of the aircraft turbine disc material of nickel-base superalloy GH4169 under high temperature. From the perspective of continuum damage mechanics, a new creep life prediction model is proposed to predict the creep life of metallic materials under both uniaxial and multiaxial stress states. The creep test data of GH4169 under different loading conditions are used to demonstrate the proposed model. Moreover, from the perspective of numerical simulation, the test data with analysis results obtained by using the finite element analysis based on Graham creep model is carried out for comparison. The results show that numerical analysis results are in good agreement with experimental data. By incorporating the numerical analysis and continuum damage mechanics, it provides an effective way to accurately describe the creep damage process of GH4169.


1996 ◽  
Vol 118 (1) ◽  
pp. 164-172 ◽  
Author(s):  
C. H. Amon ◽  
K. S. Schmaltz ◽  
R. Merz ◽  
F. B. Prinz

A molten metal droplet landing and bonding to a solid substrate is investigated with combined analytical, numerical, and experimental techniques. This research supports a novel, thermal spray shape deposition process, referred to as microcasting, capable of rapidly manufacturing near netshape, steel objects. Metallurgical bonding between the impacting droplet and the previous deposition layer improves the strength and material property continuity between the layers, producing high-quality metal objects. A thorough understanding of the interface heat transfer process is needed to optimize the microcast object properties by minimizing the impacting droplet temperature necessary for superficial substrate remelting, while controlling substrate and deposit material cooling rates, remelt depths, and residual thermal stresses. A mixed Lagrangian–Eulerian numerical model is developed to calculate substrate remelting and temperature histories for investigating the required deposition temperatures and the effect of operating conditions on remelting. Experimental and analytical approaches are used to determine initial conditions for the numerical simulations, to verify the numerical accuracy, and to identify the resultant microstructures. Numerical results indicate that droplet to substrate conduction is the dominant heat transfer mode during remelting and solidification. Furthermore, a highly time-dependent heat transfer coefficient at the droplet/substrate interface necessitates a combined numerical model of the droplet and substrate for accurate predictions of the substrate remelting. The remelting depth and cooling rate numerical results are also verified by optical metallography, and compare well with both the analytical solution for the initial deposition period and the temperature measurements during droplet solidification.


2022 ◽  
Author(s):  
Jörg R. Riccius ◽  
Evgeny B. Zametaev

2021 ◽  
Author(s):  
Eva Alvarez-Regueiro ◽  
Esperanza Barrera-Medrano ◽  
Ricardo Martinez-Botas ◽  
Srithar Rajoo

Abstract This paper presents a CFD-based numerical analysis on the potential benefits of non-radial blading turbine for low speed-low pressure applications. Electric turbocompounding is a waste heat recovery technology consisting of a turbine coupled to a generator that transforms the energy left over in the engine exhaust gases, which is typically found at low pressure, into electricity. Turbines designed to operate at low specific speed are ideal for these applications since the peak efficiency occurs at lower pressure ratios than conventional high speed turbines. The baseline design consisted of a vaneless radial fibre turbine, operating at 1.2 pressure ratio and 28,000rpm. Experimental low temperature tests were carried out with the baseline radial blading turbine at nominal, lower and higher pressure ratio operating conditions to validate numerical simulations. The baseline turbine incidence angle effect was studied and positive inlet blade angle impact was assessed in the current paper. Four different turbine rotor designs of 20, 30, 40 and 50° of positive inlet blade angle are presented, with the aim to reduce the losses associated to positive incidence, specially at midspan. The volute domain was included in all CFD calculations to take into account the volute-rotor interactions. The results obtained from numerical simulations of the modified designs were compared with those from the baseline turbine rotor at design and off-design conditions. Total-to-static efficiency improved in all the non-radial blading designs at all operating points considered, by maximum of 1.5% at design conditions and 5% at off-design conditions, particularly at low pressure ratio. As non-radial fibre blading may be susceptible to high centrifugal and thermal stresses, a structural analysis was performed to assess the feasibility of each design. Most of non-radial blading designs showed acceptable levels of stress and deformation.


Author(s):  
Valery Ponyavin ◽  
Taha Mohamed ◽  
Mohamed Trabia ◽  
Yitung Chen ◽  
Anthony E. Hechanova

Ceramics are suitable for use in high temperature applications as well as corrosive environment. These characteristics were the reason behind selection silicone carbide for a high temperature heat exchanger and chemical decomposer, which is a part of the Sulphur-Iodine (SI) thermo-chemical cycle. The heat exchanger is expected to operate in the range of 950°C. The proposed design is manufactured using fused ceramic layers that allow creation of micro-channels with dimensions below one millimeter. A proper design of the heat exchanges requires considering possibilities of failure due to stresses under both steady state and transient conditions. Temperature gradients within the heat exchanger ceramic components induce thermal stresses that dominate other stresses. A three-dimensional computational model is developed to investigate the fluid flow, heat transfer and stresses in the decomposer. Temperature distribution in the solid is imported to finite element software and used with pressure loads for stress analysis. The stress results are used to calculate probability of failure based on Weibull failure criteria. Earlier analysis showed that stress results at steady state operating conditions are satisfactory. The focus of this paper is to consider stresses that are induced during transient scenarios. In particular, the cases of startup and shutdown of the heat exchanger are considered. The paper presents an evaluation of the stresses in these two cases.


Author(s):  
Kenji Kako ◽  
Susumu Yamada ◽  
Masatsugu Yaguchi ◽  
Yusuke Minami

Type IV damage has been found at several ultra-supercritical (USC) plants that used high-chromium martensitic steels in Japan, and the assessment of the remaining life of the steels is important for electric power companies. The assessment of the remaining life needs long-term creep data for over 10 years, but such data are limited. We have attempted to assess the remaining life by creep tests and by microstructural observation of Grade 91 steels welded pipes which were used in USC plants for over 10 years. Following the results of microstructural observation of USC plant pipes, we find that microstructures, especially distribution of MX precipitates, have large effect on the creep life of Grade 91 steels.


Sign in / Sign up

Export Citation Format

Share Document