Simulations of Multi-Phase Particle Deposition on a Showerhead With Staggered Film-Cooling Holes

Author(s):  
Seth A. Lawson ◽  
Karen A. Thole ◽  
Yoji Okita ◽  
Chiyuki Nakamata

The demand for cleaner, more efficient energy has driven the motivation for improving the performance standards for gas turbines. Increasing the combustion temperature is one way to get the best possible performance from a gas turbine. One problem associated with increased combustion temperatures is that particles ingested in the fuel and air become more prone to deposition with an increase in turbine inlet temperature. Deposition on aero-engine turbine components caused by sand particle ingestion can impair turbine cooling methods and lead to reduced component life. It is necessary to understand the extent to which particle deposition affects turbine cooling in the leading edge region of the nozzle guide vane where intricate showerhead cooling geometries are utilized. For the current study, wax was used to dynamically simulate multi-phase particle deposition on a large scale showerhead cooling geometry. The effects of deposition development, coolant blowing ratio, and particle temperature were tested. Infrared thermography was used to quantify the effects of deposition on cooling effectiveness. Although deposition decreased with an increase in coolant blowing ratio, results showed that reductions in cooling effectiveness caused by deposition increased with an increase in blowing ratio. Results also showed that effectiveness reduction increased with an increase in particle temperature. Reductions in cooling effectiveness reached as high as 36% at M = 1.0.

2012 ◽  
Vol 134 (5) ◽  
Author(s):  
Seth A. Lawson ◽  
Karen A. Thole ◽  
Yoji Okita ◽  
Chiyuki Nakamata

The demand for cleaner, more efficient energy has driven the motivation for improving the performance standards for gas turbines. Increasing the combustion temperature is one way to get the best possible performance from a gas turbine. One problem associated with increased combustion temperatures is that particles ingested in the fuel and air become more prone to deposition with an increase in turbine inlet temperature. Deposition on aero-engine turbine components caused by sand particle ingestion can impair turbine cooling methods and lead to reduced component life. It is necessary to understand the extent to which particle deposition affects turbine cooling in the leading edge region of the nozzle guide vane where intricate showerhead cooling geometries are utilized. For the current study, wax was used to dynamically simulate multiphase particle deposition on a large scale showerhead cooling geometry. The effects of deposition development, coolant blowing ratio, and particle temperature were tested. Infrared thermography was used to quantify the effects of deposition on cooling effectiveness. Although deposition decreased with an increase in coolant blowing ratio, results showed that reductions in cooling effectiveness caused by deposition increased with an increase in blowing ratio. Results also showed that effectiveness reduction increased with an increase in particle temperature. Reductions in cooling effectiveness reached as high as 36% at M = 1.0.


Author(s):  
Seth A. Lawson ◽  
Karen A. Thole

Demand for clean energy has increased motivation to design gas turbines capable of burning alternative fuels such as coal derived synthesis gas (syngas). One challenge associated with burning coal derived syngas is that trace amounts of particulate matter in the fuel and air can deposit on turbine hardware reducing the effectiveness of film cooling. For the current study, a method was developed to dynamically simulate multi-phase particle deposition through injection of a low melting temperature wax. The method was developed so the effects of deposition on endwall film cooling could be quantified using a large scale vane cascade in a low speed wind tunnel. A microcrystalline wax was injected into the mainstream flow using atomizing spray nozzles to simulate both solid and molten particulate matter in a turbine gas path. Infrared thermography was used to quantify cooling effectiveness with and without deposition at various locations on a film cooled endwall. Measured results indicated reductions in adiabatic effectiveness by as much as 30% whereby the reduction was highly dependent upon the location of the film-cooling holes relative to the vane.


Author(s):  
Seth A. Lawson ◽  
Stephen P. Lynch ◽  
Karen A. Thole

Designing turbine components for maximum aerodynamic performance with adequate cooling is a critical challenge for gas turbine engineers, particularly at the endwall of a turbine due to complex secondary flows. To complicate matters, impurities from the fuel and intake air can deposit on film-cooled components downstream of the combustor. Deposition induced roughness can reduce cooling effectiveness and aerodynamic performance dramatically. One method commonly used for reducing the effects of secondary flows on aerodynamic performance is endwall contouring. The current study evaluates deposition effects on endwall contouring given the change to the secondary flow pattern. For the current study, deposition was dynamically simulated in a turbine cascade to determine its effects on film-cooling with and without endwall contouring. Computationally predicted impactions were in qualitative agreement with experimental deposition simulations showing that contouring reduced deposition around strategically placed film-cooling holes. Deposition reduced cooling effectiveness by 50% on a flat endwall and 40% on an identically cooled contoured endwall. Although 40% is still a dramatic reduction in effectiveness, the method of using the endwall contouring to alter deposition effects shows promise.


Author(s):  
Sadam Hussain ◽  
Xin Yan

Abstract Film cooling is one of the most critical technologies in modern gas turbine engine to protect the high temperature components from erosion. It allows gas turbines to operate above the thermal limits of blade materials by providing the protective cooling film layer on outer surfaces of blade against hot gases. To get a higher film cooling effect on plain surface, current study proposes a novel strategy with the implementation of hole-pair into ramp. To gain the film cooling effectiveness on the plain surface, RANS equations combined with k-ω turbulence model were solved with the commercial CFD solver ANSYS CFX11.0. In the numerical simulations, the density ratio (DR) is fixed at 1.6, and the film cooling effect on plain surface with different configurations (i.e. with only cooling hole, with only ramp, and with hole-pair in ramp) were numerically investigated at three blowing ratios M = 0.25, 0.5, and 0.75. The results show that the configuration with Hole-Pair in Ramp (HPR) upstream the cooling hole has a positive effect on film cooling enhancement on plain surface, especially along the spanwise direction. Compared with the baseline configuration, i.e. plain surface with cylindrical hole, the laterally-averaged film cooling effectiveness on plain surface with HPR is increased by 18%, while the laterally-averaged film cooling effectiveness on plain surface with only ramp is increased by 8% at M = 0.5. As the blowing ratio M increases from 0.25 to 0.75, the laterally-averaged film cooling effectiveness on plain surface with HPR is kept on increasing. At higher blowing ratio M = 0.75, film cooling effectiveness on plain surface with HPR is about 19% higher than the configuration with only ramp.


Author(s):  
Arthur Cohn ◽  
Mark Waters

It is important that the requirements and cycle penalties related to the cooling of high temperature turbines be thoroughly understood and accurately factored into cycle analyses and power plant systems studies. Various methods used for the cooling of high temperature gas turbines are considered and cooling effectiveness curves established for each. These methods include convection, film and transpiration cooling using compressor bleed and/or discharge air. In addition, the effects of chilling the compressor discharge cooling gas are considered. Performance is developed to demonstrate the impact of the turbine cooling schemes on the heat rate and specific power of Combined–Cycle power plants.


Author(s):  
Dieter E. Bohn ◽  
Volker J. Becker ◽  
Karsten A. Kusterer ◽  
Agnes U. Rungen

This paper presents the experimental investigation of the flow and the numerical analysis of the flow and heat transfer in a turbine guide vane with showerhead cooling for two different blowing ratios. The aerodynamic results are compared with those of the experiments. Starting with a showerhead design of two rows of ejection holes, two additional rows have to be used in an enhanced design due to hot gas contact in the leading edge area. Thus, the cooling gas mass flow is doubled when keeping the blowing ratio constant at m = 1.5. Lowering the amount of cooling gas needed whilst still guaranteeing sufficient cooling is the motivation for the analysis of the influence of a lower blowing ratio on the cooling efficiency. The investigated blowing ratios are m = 1.5 and m = 1.0. The experiments are conducted using a non-intrusive LDA technique. The numerical results are gained with a conjugate heat transfer and flow computer code that has been developed at the Institute of Steam and Gas Turbines. The results show that the blowing ratio has to be chosen carefully as the leading edge flow pattern and the heat transfer are strongly influenced by the blowing ratio. Lower blowing ratios lead to a better attachment of the cooling film and thus they hardly disturb the main flow. With the lower blowing ratio, the material temperature increases up to 1.5% of the total inlet temperature in the leading edge area on the pressure side, whereas it decreases locally for about 0.8% for the lower blowing ratio on the suction side. This is due to the enhanced attachment of the cooling gas film.


Author(s):  
N. Sundaram ◽  
K. A. Thole

With the increase in usage of gas turbines for power generation and given that natural gas resources continue to be depleted, it has become increasingly important to search for alternate fuels. One source of alternate fuels is coal derived synthetic fuels. Coal derived fuels, however, contain traces of ash and other contaminants that can deposit on vane and turbine surfaces affecting their heat transfer through reduced film-cooling. The endwall of a first stage vane is one such region that can be susceptible to depositions from these contaminants. This study uses a large-scale turbine vane cascade in which the following effects on film-cooling adiabatic effectiveness were investigated in the endwall region: the effect of near-hole deposition, the effect of partial film-cooling hole blockage, and the effect of spallation of a thermal barrier coating. The results indicated that deposits near the hole exit can sometimes improve the cooling effectiveness at the leading edge, but with increased deposition heights the cooling deteriorates. Partial hole blockage studies revealed that the cooling effectiveness deteriorates with increases in the number of blocked holes. Spallation studies showed that for a spalled endwall surface downstream of the leading edge cooling row, cooling effectiveness worsened with an increase in blowing ratio.


Author(s):  
Feijia Yin ◽  
Floris S. Tiemstra ◽  
Arvind G. Rao

As the overall pressure ratio (OPR) and turbine inlet temperature (TIT) of modern gas turbines are constantly being increased in the pursuit of increasing efficiency and specific power, the effect of bleed cooling air on the engine performance is increasingly becoming important. During the thermodynamic cycle analysis and optimization phase, the cooling bleed air requirement is either neglected or is modeled by simplified correlations, which can lead to erroneous results. In this current research, a physics-based turbine cooling prediction model, based on semi-empirical correlations for heat transfer and pressure drop, is developed and verified with turbine cooling data available in the open literature. Based on the validated model, a parametric analysis is performed to understand the variation of turbine cooling requirement with variation in TIT and OPR of future advanced engine cycles. It is found that the existing method of calculating turbine cooling air mass flow with simplified correlation underpredicts the amount of turbine cooling air for higher OPR and TIT, thus overpredicting the estimated engine efficiency.


Author(s):  
Majed Sammak ◽  
Marcus Thern ◽  
Magnus Genrup

Cooling is essential in all modern high-temperature gas turbines. Turbine cooling is mainly a function of gas entry temperature, which plays the key role in overall gas turbine performance. High turbine entry temperatures can be achieved through appropriate selection of blade cooling method and blade material. The semi-closed oxy-fuel combustion combined cycle (SCOC-CC) operates at the same high entry gas temperature, hence blade cooling is necessary. The aim of this paper was to calculate the required turbine cooling in oxy-fuel gas turbines and compare it to the required turbine cooling in conventional gas turbines. The approach of the paper was to evaluate the thermodynamic and aerodynamic factors affecting turbine cooling with using the m*-model. The results presented in the paper concerned a single turbine stage at a reference diameter. The study showed greater cooling effectiveness in conventional gas turbines, but a greater total cooled area in oxy-fuel gas turbines. Consequently, the calculated total required cooling mass flow was close in the both single stage turbines. The cooling requirement and cooled area for a conventional and oxy-fuel twin-shaft gas turbine was also examined. The gas turbine was designed with five turbine stages. The analysis involved various turbine power and combustion outlet temperatures (COT). The results showed that the total required cooling mass flow was proportional to turbine power because of increasing gas turbine inlet mass flow. The required cooling mass flow was proportional to COT as the blade metal temperature is maintained at acceptable limit. The analysis revealed that required cooling for oxy-fuel gas turbines was higher than for conventional gas turbines at a specific power or specific COT. This is due to the greater cooled area in oxy-fuel gas turbines. The cooling effectiveness of conventional gas turbines was greater, which indicated higher required cooling. However, the difference in cooling effectiveness between conventional and oxy-fuel gas turbines was less in rear stages. The cooling mass flow as percentage of gas turbine inlet mass was slightly higher in conventional gas turbines than in oxy-fuel gas turbines. The required cooling per square meter of cooled area was used as a parameter to compare the required cooling for oxy-fuel and conventional gas turbines. The study showed that the required cooling per cooled area was close in both studied turbines.


Author(s):  
Lei Zhao ◽  
Ting Wang

Film cooling is a cooling technique widely used in high-performance gas turbines to protect the turbine airfoils from being damaged by hot flue gases. Motivated by the need to further improve film cooling in terms of both cooling effectiveness and coolant coverage area, the mist/air film cooling scheme is investigated through experiments in this study. A small amount of tiny water droplets (7% wt.) with an average diameter about 5 μm (mist) is injected into the cooling air to enhance the cooling performance. A wind tunnel system and test facility is specifically built for this unique experiment. A Phase Doppler Particle Analyzer (PDPA) system is employed to measure droplet size, velocity, and turbulence information. An infrared camera and thermocouples are both used for temperature measurements. Part 1 is focused on the heat transfer result on the wall and Part 2 is focused on the two-phase droplet multiphase flow behavior. Mist film cooling performance is evaluated and compared against air-only film cooling in terms of adiabatic film cooling effectiveness and film coverage. A row of five circular cylinder holes is used, injecting at an inclination angle of 30° into the main flow. For the 0.6 blowing ratio cases, it is found that adding mist performs as wonderfully as we mindfully sought: the net enhancement reaches a maximum 190% locally and 128% overall at the centerline, the cooling coverage increases by 83%, and more uniform surface temperature is achieved. The latter is critical for reducing wall thermal stresses. When the blowing ratio increases from 0.6 to 1.4, both the cooling coverage and net enhancement are reduced to below 60%. Therefore, it is more beneficial to choose a relatively low blowing ratio to keep the coolant film attached to the surface when applying the mist cooling. The concept of Film Decay Length (FDL) is introduced and proven to be a useful guideline to quantitatively evaluate the effective cooling coverage and cooling decay rate.


Sign in / Sign up

Export Citation Format

Share Document