Numerical Study on Flow and Heat Transfer Characteristics of Swirl Cooling on Leading Edge Model of Gas Turbine Blade

Author(s):  
Zhao Liu ◽  
Zhenping Feng ◽  
Liming Song

In this paper a numerical simulation is performed to predict the swirl cooling on internal leading edge cooling passage model. The relative performances of four kinds of turbulence models including the standard κ-ε model, the RNG κ-ε model, the standard κ-ω model and the SST κ-ω model in the simulation of the swirl flow by tangential inlet jets in a circular pipe are compared with available experimental data. The results show that SST κ-ω model is the best one based on simulation accuracy. Then the SST κ-ω model is adopted for the present simulation. A circular pipe with a single rectangular tangential inlet jet or with two rectangular tangential inlet jets is adopted to investigate the swirl cooling and its effectiveness. The influence of the Reynolds number and the inlet to wall temperature ratio are investigated. The results indicate that the heat transfer coefficient on the swirl chamber increases with the increase of Reynolds number, and increases with the decrease of the inlet to wall temperature ratio. The swirl pipe with two tangential inlets could get a heat transfer enhancement of about three times to that of the nonswirling pipe, while swirl pipe with one tangential inlet could get a heat transfer coefficient 38% higher than that of the nonswirling pipe.

1987 ◽  
Vol 109 (2) ◽  
pp. 108-110 ◽  
Author(s):  
S. Shakerin

Experiments were performed to evaluate the convective heat transfer coefficient for a flat plate mounted in a wooden model of a roof of a building. The experiments were carried out in a closed-circuit wind tunnel and included parametric adjustments of the roof tilt and Reynolds number, based on the length of the plate. The roof tilt was set at 0, 30, 45, 60, and 90 degrees and the Reynolds number ranged from 58,000 to 250,000. A transient, one lump, thermal approach was used for heat transfer calculations. Due to a separation bubble at the leading edge of the model, i.e., the roof, at angles of attack of less than 40 degrees, the flow became turbulent after reattachment. This resulted in a higher heat transfer than previously reported in the literature. At higher angles of attack, the flow was not separated at the leading edge and remained laminar. The heat transfer coefficient for higher angles of attack, i.e., α > 40 deg, was found to be approximately independent of the angle of attack and in good agreement with the previously published results.


Author(s):  
M Yaghoubi ◽  
E Velayati

Numerical studies of fluid flow and heat transfer are made in the separated, reattached, and redeveloped regions of the three-dimensional air flow on an array of finite plates with blunt leading edge. The flow reattachment occurs at a place downstream from the leading edge and the heat transfer coefficient becomes maximum around this region. The heat transfer coefficient is found to increase sharply near the leading edge and reduces in the wake. For the range of the parameters investigated in this study, some correlations have been developed for the length of reattachment region and variation of overall heat transfer coefficient for the considered bluff obstacles with various geometry and flow Reynolds number. For such blunt plates, when they are acting like fins, fin efficiency is determined and a relation based on flow Reynolds number and geometric parameters is developed to predict variation of the overall fin efficiency.


Author(s):  
Basant Singh Sikarwar ◽  
K. Muralidhar ◽  
Sameer Khandekar

Clusters of liquid drops growing and moving on physically or chemically textured lyophobic surfaces are encountered in drop-wise mode of vapor condensation. As opposed to film-wise condensation, drops permit a large heat transfer coefficient and are hence attractive. However, the temporal sustainability of drop formation on a surface is a challenging task, primarily because the sliding drops eventually leach away the lyophobicity promoter layer. Assuming that there is no chemical reaction between the promoter and the condensing liquid, the wall shear stress (viscous resistance) is the prime parameter for controlling physical leaching. The dynamic shape of individual droplets, as they form and roll/slide on such surfaces, determines the effective shear interaction at the wall. Given a shear stress distribution of an individual droplet, the net effect of droplet ensemble can be determined using the time averaged population density during condensation. In this paper, we solve the Navier-Stokes and the energy equation in three-dimensions on an unstructured tetrahedral grid representing the computational domain corresponding to an isolated pendant droplet sliding on a lyophobic substrate. We correlate the droplet Reynolds number (Re = 10–500, based on droplet hydraulic diameter), contact angle and shape of droplet with wall shear stress and heat transfer coefficient. The simulations presented here are for Prandtl Number (Pr) = 5.8. We see that, both Poiseuille number (Po) and Nusselt number (Nu), increase with increasing the droplet Reynolds number. The maximum shear stress as well as heat transfer occurs at the droplet corners. For a given droplet volume, increasing contact angle decreases the transport coefficients.


2014 ◽  
Vol 137 (4) ◽  
Author(s):  
Benoit Laveau ◽  
Reza S. Abhari ◽  
Michael E. Crawford ◽  
Ewald Lutum

In order to continue increasing the efficiency of gas turbines, an important effort is made on the thermal management of the turbine stage. In particular, understanding and accurately estimating the thermal loads in a vane passage is of primary interest to engine designers looking to optimize the cooling requirements and ensure the integrity of the components. This paper focuses on the measurement of endwall heat transfer in a vane passage with a three-dimensional (3D) airfoil shape and cylindrical endwalls. It also presents a comparison with predictions performed using an in-house developed Reynolds-Averaged Navier–Stokes (RANS) solver featuring a specific treatment of the numerical smoothing using a flow adaptive scheme. The measurements have been performed in a steady state axial turbine facility on a novel platform developed for heat transfer measurements and integrated to the nozzle guide vane (NGV) row of the turbine. A quasi-isothermal boundary condition is used to obtain both the heat transfer coefficient and the adiabatic wall temperature within a single measurement day. The surface temperature is measured using infrared thermography through small view ports. The infrared camera is mounted on a robot arm with six degrees of freedom to provide high resolution surface temperature and a full coverage of the vane passage. The paper presents results from experiments with two different flow conditions obtained by varying the mass flow through the turbine: measurements at the design point (ReCax=7.2×105) and at a reduced mass flow rate (ReCax=5.2×105). The heat transfer quantities, namely the heat transfer coefficient and the adiabatic wall temperature, are derived from measurements at 14 different isothermal temperatures. The experimental data are supplemented with numerical predictions that are deduced from a set of adiabatic and diabatic simulations. In addition, the predicted flow field in the passage is used to highlight the link between the heat transfer patterns measured and the vortical structures present in the passage.


2019 ◽  
pp. 933-950
Author(s):  
Ashish Prakash Shahane ◽  
Digambar T. Kashid ◽  
Sandeep S. Wangikar ◽  
Sachin Kale ◽  
Surendra Barhatte ◽  
...  

Author(s):  
Bo-lun Zhang ◽  
Li Zhang ◽  
Hui-ren Zhu ◽  
Jian-sheng Wei ◽  
Zhong-yi Fu

Film cooling performance of the double-wave trench was numerically studied to improve the film cooling characteristics. Double-wave trench was formed by changing the leading edge and trailing edge of transverse trench into cosine wave. The film cooling characteristics of transverse trench and double-wave trench were numerically studied using Reynolds Averaged Navier Stokes (RANS) simulations with realizable k-ε turbulence model and enhanced wall treatment. The film cooling effectiveness and heat transfer coefficient of double-wave trench at different trench width (W = 0.8D, 1.4D, 2.1D) conditions are investigated, and the distribution of temperature field and flow field were analyzed. The results show that double-wave trench effectively improves the film cooling effectiveness and the uniformity of jet at the downstream wall of the trench. The span-wise averaged film cooling effectiveness of the double-wave trench model increases 20–63% comparing with that of the transverse trench at high blowing ratio. The anti-counter-rotating vortices which can press the film on near-wall are formed at the downstream wall of the double-wave trench. With the double-wave trench width decreasing, the film cooling effectiveness gradually reduces at the hole center-line region of the downstream trench. With the increase of the blowing ratio, the span-wise averaged heat transfer coefficient increases. The span-wise averaged heat transfer coefficient of the double-wave trench with 0.8D and 2.1D trench width is higher than that of the double-wave trench with 1.4D trench width at the high blowing ratio conditions.


Author(s):  
Kenneth W. Van Treuren ◽  
Zuolan Wang ◽  
Peter T. Ireland ◽  
Terry V. Jones ◽  
S. T. Kohler

Recent work, Van Treuren et al. (1993), has shown the transient method of measuring heat transfer under an array of impinging jets allows the determination of local values of adiabatic wall temperature and heat transfer coefficient over the complete surface of the target plate. Using this technique, an inline array of impinging jets has been tested over a range of average jet Reynolds numbers (10,000–40,000) and for three channel height to jet hole diameter ratios (1, 2, and 4). The array is confined on three sides and spent flow is allowed to exit in one direction. Local values are averaged and compared with previously published data in related geometries. The current data for a staggered array is compared to those from an inline array with the same hole diameter and pitch for an average jet Reynolds number of 10,000 and channel height to diameter ratio of one. A comparison is made between intensity and hue techniques for measuring stagnation point and local distributions of heat transfer. The influence of the temperature of the impingement plate through which the coolant gas flows on the target plate heat transfer has been quantified.


2018 ◽  
Vol 140 (12) ◽  
Author(s):  
H. Jiang ◽  
Q. Zhang ◽  
L. He ◽  
S. Lu ◽  
L. Wang ◽  
...  

Determination of a scalable Nusselt number (based on “adiabatic heat transfer coefficient”) has been the primary objective of the most existing heat transfer experimental studies. Based on the assumption that the wall thermal boundary conditions do not affect the flow field, the thermal measurements were mostly carried out at near adiabatic condition without matching the engine realistic wall-to-gas temperature ratio (TR). Recent numerical studies raised a question on the validity of this conventional practice in some applications, especially for turbine blade. Due to the relatively low thermal inertia of the over-tip-leakage (OTL) flow within the thin clearance, the fluids' transport properties vary greatly with different wall thermal boundary conditions and the two-way coupling between OTL aerodynamics and heat transfer cannot be neglected. The issue could become more severe when the gas turbine manufacturers are making effort to achieve much tighter clearance. However, there has been no experimental evidence to back up these numerical findings. In this study, transient thermal measurements were conducted in a high-temperature linear cascade rig for a range of tip clearance ratio (G/S) (0.3%, 0.4%, 0.6%, and 1%). Surface temperature history was captured by infrared thermography at a range of wall-to-gas TRs. Heat transfer coefficient (HTC) distributions were obtained based on a conventional data processing technique. The profound influence of tip surface thermal boundary condition on heat transfer and OTL flow was revealed by the first-of-its-kind experimental data obtained in the present experimental study.


Author(s):  
Vijay K. Garg

A multi-block, three-dimensional Navier-Stokes code has been used to compute heat transfer coefficient on the blade, hub and shroud for a rotating high-pressure turbine blade with 172 film-cooling holes in eight rows. Film cooling effectiveness is also computed on the adiabatic blade. Wilcox’s k-ω model is used for modeling the turbulence. Of the eight rows of holes, three are staggered on the shower-head with compound-angled holes. With so many holes on the blade it was somewhat of a challenge to get a good quality grid on and around the blade and in the tip clearance region. The final multi-block grid consists of 4784 elementary blocks which were merged into 276 super blocks. The viscous grid has over 2.2 million cells. Each hole exit, in its true oval shape, has 80 cells within it so that coolant velocity, temperature, k and ω distributions can be specified at these hole exits. It is found that for the given parameters, heat transfer coefficient on the cooled, isothermal blade is highest in the leading edge region and in the tip region. Also, the effectiveness over the cooled, adiabatic blade is the lowest in these regions. Results for an uncooled blade are also shown, providing a direct comparison with those for the cooled blade. Also, the heat transfer coefficient is much higher on the shroud as compared to that on the hub for both the cooled and the uncooled cases.


Sign in / Sign up

Export Citation Format

Share Document