Numerical Investigation of High-Pressure Turbine Environment Effects on the Prediction of Aerothermal Performances

Author(s):  
Fabien Wlassow ◽  
Francis Leboeuf ◽  
Gilles Leroy ◽  
Nicolas Gourdain ◽  
Ghislaine Ngo Boum

Aerothermal prediction for the high-pressure turbine is challenging because of the complex environment that interacts with the turbine: hot-streak migration, unsteady flow phenomena, fluid/solid thermal coupling and technological details (squealer tip, coolant ejections, fillets, etc.). There is a need to compare their relative impacts on the blade temperature and turbine efficiency prediction. This is the main purpose of this paper. URANS simulations of the flow have been performed with a structured flow solver in a one stage high-pressure turbine. The baseline simulation takes into account the squealer tip and an inlet condition representative of a hot streak generated by the combustion chamber. Other technological details (coolant ejections and fillets) and fluid/solid thermal coupling on the rotor blade are alternatively considered in the simulation in order to quantify their relative contribution. The Chimera technique is used to ease the integration of technological details. The conjugate heat transfer (CHT) problem is solved by means of a code coupling where fluxes and temperatures are exchanged at the blade surface between the fluid dynamics solver and the solid thermal code. Results shows that rotor blade fillets have a little impact on both the blade temperature and the turbine efficiency (less than 1%). On the contrary, taking into account external cooling leads to a modification of radial distribution of loss and loading coefficients and reduces the efficiency by 2%. The blade temperature is also impacted, mainly on the suction side where differences of several per cent with the baseline case are observed. Fluid/solid coupling mainly affects the blade temperature prediction by homogenizing it which induces differences around 3% with the baseline case. To complete the analysis, a post-processing that includes a computation of local entropy production terms is used. It shows that the entropy production is mainly due to turbulent dissipation and allows to identify the reduction of efficiency of the case with cooling as an additional production of entropy where the cooling flow mixes with the main flow.

2013 ◽  
Vol 136 (1) ◽  
Author(s):  
Paul F. Beard ◽  
Andy D. Smith ◽  
Thomas Povey

This paper presents an experimental and computational study of the effect of inlet swirl on the efficiency of a transonic turbine stage. The efficiency penalty is approximately 1%, but it is argued that this could be recovered by correct design. There are attendant changes in capacity, work function, and stage total-to-total pressure ratio, which are discussed in detail. Experiments were performed using the unshrouded MT1 high-pressure turbine installed in the Oxford Turbine Research Facility (OTRF) (formerly at QinetiQ Farnborough): an engine scale, short duration, rotating transonic facility, in which M, Re, Tgas/Twall, and N/T01 are matched to engine conditions. The research was conducted under the EU Turbine Aero-Thermal External Flows (TATEF II) program. Turbine efficiency was experimentally determined to within bias and precision uncertainties of approximately ±1.4% and ±0.2%, respectively, to 95% confidence. The stage mass flow rate was metered upstream of the turbine nozzle, and the turbine power was measured directly using an accurate strain-gauge based torque measurement system. The turbine efficiency was measured experimentally for a condition with uniform inlet flow and a condition with pronounced inlet swirl. Full stage computational fluid dynamics (CFD) was performed using the Rolls-Royce Hydra solver. Steady and unsteady solutions were conducted for both the uniform inlet baseline case and a case with inlet swirl. The simulations are largely in agreement with the experimental results. A discussion of discrepancies is given.


2021 ◽  
pp. 1-11
Author(s):  
Yaomin Zhao ◽  
Richard Sandberg

Abstract We report on a series of highly resolved large-eddy simulations of the LS89 high-pressure turbine (HPT) vane, varying the exit Mach number between Ma=0.7 and 1.1. In order to accurately resolve the blade boundary layers and enforce pitchwise periodicity, we for the first time use an overset mesh method, which consists of an O-type grid around the blade overlapping with a background H-type grid. The simulations were conducted either with a synthetic inlet turbulence condition or including upstream bars. A quantitative comparison shows that the computationally more efficient synthetic method is able to reproduce the turbulence characterictics of the upstream bars. We further perform a detailed analysis of the flow fields, showing that the varying exit Mach number significantly changes the turbine efficiency by affecting the suction-side transition, blade boundary layer profiles, and wake mixing. In particular, the Ma=1.1 case includes a strong shock that interacts with the trailing edge, causing an increased complexity of the flow field. We use our recently developed entropy loss analysis (Zhao and Sandberg, GT2019-90126) to decompose the overall loss into different source terms and identify the regions that dominate the loss generation. Comparing the different Ma cases, we conclude that the main mechanism for the extra loss generation in the Ma=1.1 case is the shock-related strong pressure gradient interacting with the turbulent boundary layer and the wake, resulting in significant turbulence production and extensive viscous dissipation.


Author(s):  
Yaomin Zhao ◽  
Richard D. Sandberg

Abstract We report on a series of highly resolved large-eddy simulations of the LS89 high-pressure turbine (HPT) vane, varying the exit Mach number between Ma = 0.7 and 1.1. In order to accurately resolve the blade boundary layers and enforce pitchwise periodicity, we for the first time use an overset mesh method, which consists of an O-type grid around the blade overlapping with a background H-type grid. The simulations were conducted either with a synthetic inlet turbulence condition or including upstream bars. A quantitative comparison shows that the computationally more efficient synthetic method is able to reproduce the turbulence characterictics of the upstream bars. We further perform a detailed analysis of the flow fields, showing that the varying exit Mach number significantly changes the turbine efficiency by affecting the suction-side transition, blade boundary layer profiles, and wake mixing. In particular, the Ma = 1.1 case includes a strong shock that interacts with the trailing edge, causing an increased complexity of the flow field. We use our recently developed entropy loss analysis (Zhao and Sandberg, GT2019-90126) to decompose the overall loss into different source terms and identify the regions that dominate the loss generation. Comparing the different Ma cases, we conclude that the main mechanism for the extra loss generation in the Ma = 1.1 case is the shock-related strong pressure gradient interacting with the turbulent boundary layer and the wake, resulting in significant turbulence production and extensive viscous dissipation.


Author(s):  
Maik Tiedemann ◽  
Friedrich Kost

This investigation is aimed at the experimental determination of the location, the extent, and the modes of the laminar-to-turbulent transition processes in the boundary layers of a high pressure turbine rotor blade. The results are based on time-resolved, qualitative wall shear stress data which was derived from surface hotfilm measurements. The tests were conducted in the “Windtunnel for Rotating Cascades” of the DLR in Göttingen. For the evaluation of the influence of passing wakes and shocks on the unsteady boundary layer transition, a test with undisturbed rotor inlet flow was conducted in addition to full stage tests. Two different transition modes led to a periodic-unsteady, multi-moded transition on the suction side. In between two wakes, transition started in the bypass mode and terminated as separated-flow transition. Underneath the wakes, plain bypass transition occurred. The weak periodic boundary layer features on the pressure side indicate that this surface was not significantly affected by passing wakes or shocks. The acquired data reveals that the periodically disturbed suction side boundary layer is less susceptible to bubble bursting than the undisturbed flowfield. Thus, these blades may be subjected to higher aerodynamic loads. Accordingly, as in low pressure turbines, the unsteady effects in high pressure turbines may allow for a reduction of the number of rotor blades, with respect to the original design.


Author(s):  
Qingjun Zhao ◽  
Fei Tang ◽  
Huishe Wang ◽  
Jianyi Du ◽  
Xiaolu Zhao ◽  
...  

In order to explore the influence of hot streak temperature ratio on low pressure stage of a Vaneless Counter-Rotating Turbine, three-dimensional multiblade row unsteady Navier-Stokes simulations have been performed. The predicted results show that hot streaks are not mixed out by the time they reach the exit of the high pressure turbine rotor. The separation of colder and hotter fluids is observed at the inlet of the low pressure turbine rotor. After making interactions with the inner-extending shock wave and outer-extending shock wave in the high pressure turbine rotor, the hotter fluid migrates towards the pressure surface of the low pressure turbine rotor, and the most of colder fluid migrates to the suction surface of the low pressure turbine rotor. The migrating characteristics of the hot streaks are predominated by the secondary flow in the low pressure turbine rotor. The effect of buoyancy on the hotter fluid is very weak in the low pressure turbine rotor. The results also indicate that the secondary flow intensifies in the low pressure turbine rotor when the hot streak temperature ratio is increased. The effects of the hot streak temperature ratio on the relative Mach number and the relative flow angle at the inlet of the low pressure turbine rotor are very remarkable. The isentropic efficiency of the Vaneless Counter-Rotating Turbine decreases as the hot streak temperature ratio is increased.


Author(s):  
Knut Lehmann ◽  
Richard Thomas ◽  
Howard Hodson ◽  
Vassilis Stefanis

An experimental study has been conducted to investigate the distribution of the convective heat transfer on the shroud of a high pressure turbine blade in a large scale rotating rig. A continuous thin heater foil technique has been adapted and implemented on the turbine shroud. Thermochromic Liquid Crystals were employed for the surface temperature measurements to derive the experimental heat transfer data. The heat transfer is presented on the shroud top surfaces and the three fins. The experiments were conducted for a variety of Reynolds numbers and flow coefficients. The effects of different inter-shroud gap sizes and reduced fin tip clearance gaps were also investigated. Details of the shroud flow field were obtained using an advanced Ammonia-Diazo surface flow visualisation technique. CFD predictions are compared with the experimental data and used to aid interpretation. Contour maps of the Nusselt number reveal that regions of highest heat transfer are mostly confined to the suction side of the shroud. Peak values exceed the average by as much as 100 percent. It has been found that the interaction between leakage flow through the inter-shroud gaps and the fin tip leakage jets are responsible for this high heat transfer. The inter-shroud gap leakage flow causes a disruption of the boundary layer on the turbine shroud. Furthermore, the development of the large recirculating shroud cavity vortices is severely altered by this leakage flow.


Author(s):  
Lucas Pawsey ◽  
David John Rajendran ◽  
Vassilios Pachidis

An unlocated shaft failure in the high pressure turbine spool of an engine may result in a complex orbiting motion along with rearward axial displacement of the high pressure turbine rotor sub-assembly. This is due to the action of resultant forces and limitations imposed by constraints such as the bearings and turbine casing. Such motion of the rotor following an unlocated shaft failure, results in the development of multiple contacts between the components of the rotor sub-assembly, the turbine casing, and the downstream stator casing. Typically, in the case of shrouded rotor blades, the tip region is in the form of a seal with radial protrusions called ‘fins’ between the rotor blade and the turbine casing. The contact between the rotor blade and the turbine casing will therefore result in excessive wear of the tip seal fins, resulting in changes in the geometry of the tip seal domain that affects the characteristics of the tip leakage vortex. The rotor sub-assembly with worn seals may also be axially displaced rearwards, and consequent to this displacement, changes in the geometry of the rotor blade may occur because of the contact between the rotor sub-assembly and the downstream stator casing. An integrated approach of structural analyses, secondary air system dynamics, and 3D CFD is adopted in the present study to quantify the effect of the tip seal damage and axial displacement on the aerodynamic performance of the turbine stage. The resultant geometry after wearing down of the fins in the tip seal, and rearward axial displacement of the rotor sub-assembly is obtained from LS-DYNA simulations. 3D RANS analyses are carried out to quantify the aerodynamic performance of the turbine with worn fins in the tip seal at three different axial displacement locations i.e. 0 mm, 10 mm and 15 mm. The turbine performance parameters are then compared with equivalent cases in which the fins in the tip seal are intact for the same turbine axial displacement locations. From this study it is noted that the wearing of tip seal fins results in reduced turbine torque, power output and efficiency, consequent to changes in the flow behaviour in the turbine passages. The reduction in turbine torque will result in the reduction of the terminal speed of the rotor during an unlocated shaft failure. Therefore, a design modification that can lead to rapid wearing of the fins in the tip seal after an unlocated shaft failure holds promise for the management of a potential over-speed event.


Author(s):  
Paul D. Orkwis ◽  
Mark G. Turner ◽  
John W. Barter

Steady state surface rothalpy results obtained with a lumped deterministic source term are compared with results obtained from a traditional nonlinear inviscid unsteady solution for an aircraft engine first stage high-pressure turbine rotor configuration. Boundary condition/potential field effects and the order of accuracy of the available schemes are shown to have a significant effect on surface rothalpy results. However, the new technique demonstrates a significant potential for including unsteady effects in time average calculations with minimal computer effort.


Sign in / Sign up

Export Citation Format

Share Document