Conjugate Heat Transfer Predictions of Effusion Cooling: The Influence of Injection Hole Size on Cooling Performance

Author(s):  
H. I. Oguntade ◽  
G. E. Andrews ◽  
A. D. Burns ◽  
D. B. Ingham ◽  
M. Pourkashanian

Conjugate heat transfer CFD was undertaken on the influence of hole size on effusion cooling. The coupled thermal mixing between the hot-gas and coolant jets and the heat transfer within the effusion walls were modelled using the ANSYS FLUENT software. The heat and mass transfer analogy was employed to predict the adiabatic film cooling effectiveness separately from the overall cooling effectiveness by adding a tracer gas to the coolant air and predicting its concentration at the inner wall surface. The geometries predicted were those investigated experimentally by Andrews and his co-workers using a 152mm length of effusion cooling with 10 rows of square array holes in a flat metal wall. Effusion of X/D of 4.6 and 1.85 were investigated at constant X, the large hole diameter at the lower X/D drastically reduces the hole blowing rate and this improves the film cooling and deteriorates the internal wall cooling. The CFD predictions enable these qualitative effects to be investigated in more detail. The agreement of predictions and experiment was very good at low coolant mass flow rates, but under-predicted the measurements at higher flow rates by about 5–12%. The experimental results showed that the smaller X/D gave a better overall cooling performance and the predictions also showed this, but demonstrated that it was not just to due improved effusion film cooling as there was not the expected large reduction in internal wall cooling.

Author(s):  
Antar M. M. Abdala ◽  
Fifi N. M. Elwekeel ◽  
Qun Zheng

In the present study, theoretical investigation of film cooling effectiveness and heat transfer behavior for radiusing of film hole exit was evaluated. Seven rounding radii of R=0.0D, 0.06D, 0.08D, 0.1D, 0.3D, 0.5D and 0.8D were investigated. The film cooling effectiveness, the heat transfer coefficient, net heat flux ratio and discharge coefficient were investigated. Four mass flow rates in the range of 0.00044: 0.0018[kg/s] were used to investigate the effects of coolant velocity on the film cooling performance. Results show that using the film hole exit radiusing helps in improvement the film cooling effectiveness. The radius of R=0.5D shows higher film cooling effectiveness among the other radii. The spatially average laterally film cooling effectiveness and net heat flux ratio of R=0.5D outperforms the case of R=0.0D at all mass flow rates except at higher rates the values are lower. Discharge coefficient of R=0.5D shows enhancement than R=0.0D with the pressure ratios. Interpretation of the low and high heat transfer coefficient regions for radii of R=0.5D and R= 0.0D depending on the flow structures was explained in detail.


Author(s):  
M. Ghorab ◽  
S. I. Kim ◽  
I. Hassan

Cooling techniques play a key role in improving efficiency and power output of modern gas turbines. The conjugate technique of film and impingement cooling schemes is considered in this study. The Multi-Stage Cooling Scheme (MSCS) involves coolant passing from inside to outside turbine blade through two stages. The first stage; the coolant passes through first hole to internal gap where the impinging jet cools the external layer of the blade. Finally, the coolant passes through the internal gap to the second hole which has specific designed geometry for external film cooling. The effect of design parameters, such as, offset distance between two-stage holes, gap height, and inclination angle of the first hole, on upstream conjugate heat transfer rate and downstream film cooling effectiveness performance are investigated computationally. An Inconel 617 alloy with variable properties is selected for the solid material. The conjugate heat transfer and film cooling characteristics of MSCS are analyzed across blowing ratios of Br = 1 and 2 for density ratio, 2. This study presents upstream wall temperature distributions due to conjugate heat transfer for different gap design parameters. The maximum film cooling effectiveness with upstream conjugate heat transfer is less than adiabatic film cooling effectiveness by 24–34%. However, the full coverage of cooling effectiveness in spanwise direction can be obtained using internal cooling with conjugate heat transfer, whereas adiabatic film cooling effectiveness has narrow distribution.


Author(s):  
Lin Ye ◽  
Cun-liang Liu ◽  
Hai-yong Liu ◽  
Hui-ren Zhu ◽  
Jian-xia Luo

To investigate the effects of the inclined ribs on internal flow structure in film hole and the film cooling performance on outer surface, experimental and numerical studies are conducted on the effects of rib orientation angle on film cooling of compound cylindrical holes. Three coolant channel cases, including two ribbed cross-flow channels (135° and 45° angled ribs) and the plenum case, are studied under three blowing ratios (0.5, 1.0 and 2.0). 2D contours of film cooling effectiveness as well as heat transfer coefficient were measured by transient liquid crystal measurement technique (TLC). The steady RANS simulations with realizable k-ε turbulence model and enhanced wall treatment were performed. The results show that the spanwise width of film coverage is greatly influenced by the rib orientation angle. The spanwise width of the 45° rib case is obviously larger than that of the 135° rib case under lower blowing ratios. When the blowing ratio is 1.0, the area-averaged cooling effectiveness of the 135° rib case and the 45° rib case are higher than that of the plenum case by 38% and 107%, respectively. With the increase of blowing ratio, the film coverage difference between different rib orientation cases becomes smaller. The 45° rib case also produces higher heat transfer coefficient, which is higher than the 135° rib case by 3.4–8.7% within the studied blowing ratio range. Furthermore, the discharge coefficient of the 45° rib case is the lowest among the three cases. The helical motion of coolant flow is observed in the hole of 45° rib case. The jet divides into two parts after being blown out of the hole due to this motion, which induces strong velocity separation and loss. For the 135° rib case, the vortex in the upper half region of the secondary-flow channel rotates in the same direction with the hole inclination direction, which leads to the straight streamlines and thus results in lower loss and higher discharge coefficient.


Author(s):  
Young Seok Kang ◽  
Dong-Ho Rhee ◽  
Sanga Lee ◽  
Bong Jun Cha

Abstract Conjugate heat transfer analysis method has been highlighted for predicting heat exchange between fluid domain and solid domain inside high-pressure turbines, which are exposed to very harsh operating conditions. Then it is able to assess the overall cooling effectiveness considering both internal cooling and external film cooling at the cooled turbine design step. In this study, high-pressure turbine nozzles, which have three different film cooling holes arrangements, were numerically simulated with conjugate heat transfer analysis method for predicting overall cooling effectiveness. The film cooling holes distributed over the nozzle pressure surface were optimized by minimizing the peak temperature, temperature deviation. Additional internal cooling components such as pedestals and rectangular rib turbulators were modeled inside the cooling passages for more efficient heat transfer. The real engine conditions were given for boundary conditions to fluid and solid domains for conjugate heat transfer analysis. Hot combustion gas properties such as specific heat at constant pressure and other transport properties were given as functions of temperature. Also, the conductivity of Inconel 718 was also given as a function of temperature to solve the heat equation in the nozzle solid domain. Conjugate heat transfer analysis results showed that optimized designs showed better cooling performance, especially on the pressure surface due to proper staggering and spacing hole-rows compared to the baseline design. The overall cooling performances were offset from the adiabatic film cooling effectiveness. Locally concentrated heat transfer and corresponding high cooling effectiveness region appeared where internal cooling effects were overlapped in the optimized designs. Also, conjugate heat transfer analysis results for the optimized designs showed more uniform contours of the overall cooling effectiveness compared to the baseline design. By varying the coolant mass flow rate, it was observed that pressure surface was more sensitive to the coolant mass flow rate than nozzle leading edge stagnation region and suction surface. The CHT results showed that optimized designs to improve the adiabatic film cooling effectiveness also have better overall cooling effectiveness.


Author(s):  
Cuong Q. Nguyen ◽  
Perry L. Johnson ◽  
Bryan C. Bernier ◽  
Son H. Ho ◽  
Jayanta S. Kapat

Data from conical-shaped film cooling holes is extremely sparse in open literature, especially the cooling uniformity characteristic, an important criterion for evaluating any film cooling design. The authors will compare the performance of conical-shaped holes to cylindrical-shaped holes. Cylindrical-shaped holes are often considered a baseline in terms of film cooling effectiveness and cooling uniformity coefficient. The authors will study two coupons with conical-shaped holes, which have 3° and 6° diffusion angles, named CON3 and CON6 respectively. A conjugate heat transfer computational fluid dynamics model and an experimental wind tunnel will be used to study these coupons. The three configurations: cylindrical baseline, CON3, and CON6, have a single row of holes with an inlet metering diameter of 3mm, length-to-nominal diameter of 4.3, and an injection angle of 30°. In this study, the authors will also take into account the heat transfer into the coolant flow from the coolant channel. In other words, coolant temperature at the exit of the coolant hole will be different than that measured at the inlet, and the conjugate heat transfer model will be used to correct for this difference. For the numerical model, the realizable k-ε turbulent model will be applied with a second order of discretization and enhanced wall treatment to provide the highest accuracy available. Grid independent studies for both cylindrical-shaped film cooling holes and conical-shaped holes will be performed and the results will be compared to data in open literature as well as in-house experimental data. Results show that conical-shaped holes considerably outperform cylindrical-shaped holes in film cooling effectiveness at all blowing ratios. In terms of cooling uniformity, conical-shaped holes perform better than cylindrical-shaped holes for low and mid-range blowing ratios, but not at higher levels.


Author(s):  
Peter T. Ingram ◽  
Savas Yavuzkurt

In existing gas turbine heat transfer literature there are several correlations developed for the spanwise-averaged film-cooling effectiveness and heat transfer augmentation for inline injection on flat plates. More accurate and detailed prediction of film-cooling performance, particularly 3-D metal temperatures are needed for design purposes. 2-D correlations where effectiveness and heat transfer augmentation are functions of streamwise and spanwise directions would help to satisfy this need. Based on this fact, the current study extends the spanwise-averaged correlations into 2-D correlations by using a Gaussian distribution in the transverse direction. The correlations are obtained using limited spanwise data and more available spanwise-averaged data and existing spanwise-averaged correlations for a single row of holes with inline injection. These correlations presented in this paper are functions of different flow parameters such as mass flow ratio M, density ratio DR, transverse pitch P/D, and inline injection angle α, with ranges of M:0.2–2.5, DR: 1.2,1.5,1.8, P/D: 2, 3,5, α: 30, 60, 90 degrees. The developed correlations match existing spanwise-averaged correlations when averaged. These correlations are used to calculate solid flat plate temperatures for two well-documented cases of film-cooled flat plates. Spanwise variations in the metal temperature were calculated to be between 5–6K for a temperature difference of 40K and between 20–30K for a temperature difference of 250K, significant for design purposes. The study also contains the comparison of solid temperatures for conjugate and non-conjugate heat transfer cases using a Reduced Order Film Model (ROFM) which is implemented in a loosely coupled conjugate heat transfer technique called Iterative Conjugate Heat Transfer (ICHT)).The differences between conjugate and non conjugate simulations are about 6K or 2% of the local temperature for low temperature study and about 20K or 5% for high temperature study. The study showed that the difference between conjugate and non-conjugate solutions increases as the temperature levels increase. These differences are quite important and should be taken into account during design of turbine blades.


Author(s):  
D. H. Zhang ◽  
L. Sun ◽  
Q. Y. Chen ◽  
M. Lin ◽  
M. Zeng ◽  
...  

Embedding a row of typical cylindrical holes in a transverse slot can improve the cooling performance. Rectangular slots can increase the cooling effectiveness but is at the cost of decreasing of discharge coefficients. An experiment is conducted to examine the effects of an overlying transverse inclined trench on the film cooling performance of axial holes. Four different trench configurations are tested including the baseline inclined cylindrical holes. The influence of the geometry of the upstream lip of the exit trench and the geometry of the inlet trench on cooling performance is examined. Detailed film cooling effectiveness and heat transfer coefficients are obtained separately using the steady state IR thermography technique. The discharge coefficients are also acquired to evaluate the aerodynamic performance of different hole configurations. The results show that the film cooling holes with both ends embedded in slots can provide higher film cooling effectiveness and lower heat transfer coefficients; it also can provide higher discharge coefficients whilst retaining the mechanical strength of a row of discrete holes. The cooling performance and the aerodynamic performance of the holes with both ends embedded in inclined slots are superior to the holes with only exit trenched. To a certain extent, the configuration of the upstream lip of the exit trench affects the cooling performance of the downstream of the trench. The filleting for the film hole inlet avail the improvement of the cooling effect, but not for the film hole outlet. Comparing film cooling with embedded holes to unembedded holes, the overall heat flux ratio shows that the film holes with both ends embedded in slots and filleting for the film hole inlet can produce the highest heat flux reduction.


Author(s):  
Lin Ye ◽  
Cun-liang Liu ◽  
Hui-ren Zhu ◽  
Jian-xia Luo ◽  
Ying-ni Zhai

This paper presents an experimental and numerical investigation on the film cooling with different coolant feeding channel structures. Two ribbed cross-flow channels with rib-orientation of 135° and 45° respectively and the plenum coolant channel have been studied and compared to find out the effect of rib orientation on the film cooling performances of cylindrical holes. The film cooling effectiveness and heat transfer coefficient were measured by the transient heat transfer measurement technique with narrow-band thermochromic liquid crystal. Numerical simulations with realizable k-ε turbulence model were also performed to analyze the flow mechanism. The results show that the coolant channel structure has a notable effect on the flow structure of film jet which is the most significant mechanism affecting the film cooling performance. Generally, film cooling cases fed with ribbed cross-flow channels have asymmetric counter-rotating vortex structures and related asymmetric temperature distributions, which make the film cooling effectiveness and the heat transfer coefficient distributions asymmetric to the hole centerline. The discharge coefficient of the 45° rib case is the lowest among the three cases under all the blowing ratios. And the plenum case has higher discharge coefficient than the 135° rib case under low blowing ratio. With the increase of blowing ratio, the discharge coefficient of the 135° rib case gets larger than the plenum case gradually, because the vortex in the upper half region of the coolant channel rotates in the same direction with the film hole inclination direction and makes the jet easy to flow into the film hole in the 135° rib case.


Author(s):  
Lin Ye ◽  
Cun-liang Liu ◽  
Hai-yong Liu ◽  
Qi-jiao He ◽  
Gang Xie

The trailing edge of the high-pressure turbine blade presents significant challenges to cooling structure design. To achieve better cooling performance at turbine blade trailing edge, a novel ribbed cutback structure is proposed for trailing edge cooling, which has rib structures on the cutback surface for heat transfer enhancement. In this study, numerical simulations have been performed on the effects of V-shaped rib angle on the film cooling characteristics and flow physics. Three V-shaped rib angles of 30°, 45° and 60° are studied. The distributions of adiabatic cooling effectiveness and heat transfer coefficient are obtained under blowing ratios with the value of 0.5, 1.0 and 1.5 respectively. Due to the relatively small rib height, the effect of V-shaped ribs on the film cooling effectiveness is not notable. The disadvantage of V-shaped ribs mainly exhibits at the downstream area of cutback surface. With the increase of V-shaped rib angle, the film cooling effectiveness becomes lower, but the values are still above 0.9. The V-shaped ribs obviously enhance the heat transfer on trailing edge cutback surface. The area-averaged heat transfer coefficient of the V-rib case is higher than that of the smooth case by 26.3–41.2%. The 45° V-rib case has higher heat transfer intensity than the other two V-shaped rib cases under all the three blowing ratios. However, the heat transfer coefficient distribution of the 60° V-rib case is more uniform. The heat transfer intensity of the 30° V-rib case is higher in the downstream region than the other two cases, but lower in the upstream region in which the difference becomes smaller with the increase of blowing ratio. The 45° V-rib case and the 60° V-rib case both reach the maximum value of area-averaged heat transfer intensity under blowing ratio is 1.0. Under higher blowing ratio, the 30° V-rib case and the 45° V-rib case outperform 2.1% and 6.7% higher value relative to the 60° V-rib case respectively due to the smaller velocity gradient in the 60° V-rib case in the downstream.


1999 ◽  
Vol 121 (2) ◽  
pp. 225-232 ◽  
Author(s):  
R. J. Goldstein ◽  
P. Jin ◽  
R. L. Olson

A special naphthalene sublimation technique is used to study the film cooling performance downstream of one row of holes of 35 deg inclination angle with 3d hole spacing and relatively small hole length to diameter ratio (L/d = 6.3). Both film cooling effectiveness and mass/heat transfer coefficient are determined for blowing rates from 0.5 to 2.0 with density ratio of 1.0. The mass transfer coefficient is measured using pure air film injection, while the film cooling effectiveness is derived from comparison of mass transfer coefficients obtained following injection of naphthalene-vapor-saturated air with those from pure air injection. This technique enables one to obtain detailed local information on film cooling performance. The laterally averaged and local film cooling effectiveness agree with previous experiments. The difference between mass/heat transfer coefficients and previous heat transfer results indicates that conduction error may play an important role in the earlier heat transfer measurements.


Sign in / Sign up

Export Citation Format

Share Document