Experimental Investigation Into Thermal Behaviour of Steam Turbine Components: Part 1—Temperature Measurements With Optical Probes

Author(s):  
W. F. Mohr ◽  
P. Ruffino

The first-in-time application of intensity pyrometry to measure in-situ the hot rotor surface temperature of a standard, combined cycle, intermediate pressure steam turbine is presented. The data cover a cold-start and cooling from base load. The pyrometric temperatures are compared to standard temperature measurements on static turbine parts and an upstream steam temperature measured on a thermo well. It is reported, how the applicability of pyrometry in steam turbines was assessed. Details are given about a newly developed USC autoclave, which was used to measure steam transmittance, and about the measurement of the emissivity of the rotor metal. Further the steps taken towards a steam-pyrometer are shown; how it was developed, validated in terms of its precision and lifetime in hot steam environment, and how its integration to a standard turbine was prepared.

Author(s):  
Yiping Fu ◽  
Thomas Winterberger

Steam turbines for modern fossil and combined cycle power plants typically utilize a reheat cycle with High Pressure (HP), Intermediate Pressure (IP), and Low Pressure (LP) turbine sections. For an HP turbine section operating entirely in the superheat region, section efficiency can be calculated based on pressure and temperature measurements at the inlet and exhaust. For this case HP section efficiency is normally assumed to be a constant value over a load range if inlet control valve position and section pressure ratio remain constant. It has been observed that changes in inlet steam temperature impact HP section efficiency. K.C. Cotton stated that ‘the effect of throttle temperature on HP turbine efficiency is significant’ in his book ‘Evaluating and Improving Steam Turbine Performance’ (2nd Edition, 1998). The information and conclusions provided by K.C. Cotton are based on test results for large fossil units calculated with 1967 ASME steam tables. Since the time of Mr. Cotton’s observations, turbine configurations have evolved, more accurate 1997 ASME steam tables have been released, and our ability to quickly analyze large quantities of data has greatly increased. This paper studies the relationship between inlet steam temperature and HP section efficiency based on both 1967 and 1997 ASME steam tables and recent test data, which is analyzed computationally to reveal patterns and trends. With the efficiencies of various inlet pressure class HP section turbines being calculated with both 1967 and 1997 ASME steam tables, a comparison reveals different characteristics in the relationship between inlet steam temperature and HP section efficiency. Recommendations are made on how the results may be used to improve accuracy when testing and trending HP section performance.


Author(s):  
Silvio Cafaro ◽  
Alberto Traverso ◽  
Aristide F. Massardo ◽  
Roberto Bittarello

This research is focused on the monitoring and diagnostic of the bottoming cycle (BC) of a large size combined cycle, composed by a three pressure level HRSG (Heat Recovery Steam Generator), a three expansion level steam turbine and auxiliary pumps. An original Matlab software was developed, which is composed by two parts: the first calculates HRSG performance, while the second is focused on the calculation of the steam turbines performance, at different power plant operating conditions. In the first part a complete HRSG performance analysis is carried out: it consists of the calculation of each heat exchanger performance and health. The direct result of this analysis is the definition of Non Dimensional Performance Indexes (NDPI) for each heat exchanger, which define the instant degradation of each component, through the comparison between the “actual” and the “expected” effectiveness. The second part calculates steam turbines performance. Two NDPIs are defined: one referred to the high pressure steam turbine and the other referred to the middle-low pressure steam turbine. The performance indexes are calculated comparing the actual expansion efficiency with the expected one. The NDPI previously defined will be used to monitor plant degradation, to support plant maintenance, and to assist on-line troubleshooting. Each performance parameter is coupled with an accuracy factor, which allows to determine the best parameters to be monitored and to define the related tolerance due to measurement errors. The methodology developed has been successfully applied to historical logged data (2 years) of an existing large size (400 MW) combined cycle, demonstrating the capabilities in estimating the degradation of the BC performance throughout plant life.


Author(s):  
Eduardo Antonio Pina ◽  
Marcelo Modesto

Brazil’s sugarcane industry has been characterized by low efficiency in energy production as it consumes large amounts of bagasse as fuel in its cogeneration system, considering its low price and abundance. The possibility of selling surplus electricity to the grid has motivated investments in improvements, such as reduction of steam demand by means of process thermal integration and double distillation systems, and employment of condensing instead of back pressure steam turbines. Four different cogeneration systems were analyzed in this work: two traditional Rankine Cycles, the first presenting back pressure steam turbine and the second featuring condensing steam turbine configuration; a BIGCC (Biomass Gasification Combined Cycle) and an altered model of the BIGCC, comprised by an extra gas turbine set operating with ethanol. Thermoeconomic analyses determining exergy based costs of electricity and ethanol for all cases were carried out. The main objective of this work is to assess the proposal to maximize electricity production from the sugarcane industry in Brazil.


Author(s):  
Juri Bellucci ◽  
Federica Sazzini ◽  
Filippo Rubechini ◽  
Andrea Arnone ◽  
Lorenzo Arcangeli ◽  
...  

This paper focuses on the use of the CFD for improving a steam turbine preliminary design tool. Three-dimensional RANS analyses were carried out in order to independently investigate the effects of profile, secondary flow and tip clearance losses, on the efficiency of two high-pressure steam turbine stages. The parametric study included geometrical features such as stagger angle, aspect ratio and radius ratio, and was conducted for a wide range of flow coefficients to cover the whole operating envelope. The results are reported in terms of stage performance curves, enthalpy loss coefficients and span-wise distribution of the blade-to-blade exit angles. A detailed discussion of these results is provided in order to highlight the different aerodynamic behavior of the two geometries. Once the analysis was concluded, the tuning of a preliminary steam turbine design tool was carried out, based on a correlative approach. Due to the lack of a large set of experimental data, the information obtained from the post-processing of the CFD computations were applied to update the current correlations, in order to improve the accuracy of the efficiency evaluation for both stages. Finally, the predictions of the tuned preliminary design tool were compared with the results of the CFD computations, in terms of stage efficiency, in a broad range of flow coefficients and in different real machine layouts.


Author(s):  
Andreas Pickard

At the start of this new century, environmental regulations and free-market economics are becoming the key drivers for the electricity generating industry. Advances in Gas Turbine (GT) technology, allied with integration and refinement of Heat Recovery Steam Generators (HRSG) and Steam Turbine (ST) plant, have made Combined Cycle installations the most efficient of the new power station types. This potential can also be realized, to equal effect, by adding GT’s and HRSG’s to existing conventional steam power plants in a so-called ‘repowering’ process. This paper presents the economical and environmental considerations of retrofitting the steam turbine within repowering schemes. Changing the thermal cycle parameters of the plant, for example by deletion of the feed heating steambleeds or by modified live and reheat steam conditions to suit the combined cycle process, can result in off-design operation of the existing steam turbine. Retrofitting the steam turbine to match the combined cycle unit can significantly increase the overall cycle efficiency compared to repowering without the ST upgrade. The paper illustrates that repowering, including ST retrofitting, when considered as a whole at the project planning stage, has the potential for greater gain by allowing proper plant optimization. Much of the repowering in the past has been carried out without due regard to the benefits of re-matching the steam turbine. Retrospective ST upgrade of such cases can still give benefit to the plant owner, especially when it is realized that most repowering to date has retained an unmodified steam turbine (that first went into operation some decades before). The old equipment will have suffered deterioration due to aging and the steam path will be to an archaic design of poor efficiency. Retrofitting older generation plant with modern leading-edge steam-path technology has the potential for realizing those substantial advances made over the last 20 to 30 years. Some examples, given in the paper, of successfully retrofitted steam turbines applied in repowered plants will show, by specific solution, the optimization of the economics and benefit to the environment of the converted plant as a whole.


Author(s):  
Kevin Cremanns ◽  
Dirk Roos ◽  
Arne Graßmann

In order to meet the requirements of rising energy demand, one goal in the design process of modern steam turbines is to achieve high efficiencies. A major gain in efficiency is expected from the optimization of the last stage and the subsequent diffuser of a low pressure turbine (LP). The aim of such optimization is to minimize the losses due to separations or inefficient blade or diffuser design. In the usual design process, as is state of the art in the industry, the last stage of the LP and the diffuser is designed and optimized sequentially. The potential physical coupling effects are not considered. Therefore the aim of this paper is to perform both a sequential and coupled optimization of a low pressure steam turbine followed by an axial radial diffuser and subsequently to compare results. In addition to the flow simulation, mechanical and modal analysis is also carried out in order to satisfy the constraints regarding the natural frequencies and stresses. This permits the use of a meta-model, which allows very time efficient three dimensional (3D) calculations to account for all flow field effects.


Author(s):  
Joerg Schuerhoff ◽  
Andrei Ghicov ◽  
Karsten Sattler

Blades for low pressure steam turbines operate in flows of saturated steam containing water droplets. The water droplets can impact rotating last stage blades mainly on the leading edge suction sides with relative velocities up to several hundred meters per second. Especially on large blades the high impact energy of the droplets can lead to a material loss particularly at the inlet edges close to the blade tips. This effect is well known as “water droplet erosion”. The steam turbine manufacturer use several techniques, like welding or brazing of inlays made of erosion resistant materials to reduce the material loss. Selective, local hardening of the blade leading edges is the preferred solution for new apparatus Siemens steam turbines. A high protection effect combined with high process stability can be ensured with this Siemens hardening technique. Furthermore the heat input and therewith the geometrical change potential is relatively low. The process is flexible and can be adapted to different blade sizes and the required size of the hardened zones. Siemens collected many years of positive operational experience with this protection measure. State of the art turbine blades often have to be developed with precipitation hardening steels and/or a shroud design to fulfill the high operational requirements. A controlled hardening of the inlet edges of such steam turbine blades is difficult if not impossible with conventional methods like flame hardening. The Siemens steam turbine factory in Muelheim, Germany installed a fully automated laser treatment facility equipped with two co-operating robots and two 6 kW high power diode laser to enable the in-house hardening of such blades. Several blade designs from power generation and industrial turbines were successfully laser treated within the first year in operation. This paper describes generally the setup of the laser treatment facility and the application for low pressure steam turbine blades made of precipitation hardening steels and blades with shroud design, including the post laser heat treatments.


Author(s):  
Paul Hurd ◽  
Frank Truckenmueller ◽  
Norbert Thamm ◽  
Helmut Pollak ◽  
Matthias Neef ◽  
...  

Modern steam turbines of the author’s company are based on advanced technology such as high efficiency seals, 3D blading, single inner cylinders, and advanced materials. These technologies result in a compact opposed-flow HP/IP combined cylinder design with high long-term efficiency, reliability, and availability. This paper will illustrate the features, benefits, and operational experience of large steam turbines with advanced technologies using an opposed-flow HP/IP cylinder. The paper will also address the relative performance of this type of steam turbine against its predecessors. Specific examples will be examined: 350 MW fossil units in the Asian market, a typical 250 MW combined cycle steam turbine in the American market, a 700 MW three-cylinder class design for conventional steam plants developed for the global coal market, and a 600 MW steam turbine upgrade.


Author(s):  
Yasuhiro Yoshida ◽  
Kazunori Yamanaka ◽  
Atsushi Yamashita ◽  
Norihiro Iyanaga ◽  
Takuya Yoshida

In the fast start-up for combined cycle power plants (CCPP), the thermal stresses of the steam turbine rotor are generally controlled by the steam temperatures or flow rates by using gas turbines (GTs), steam turbines, and desuperheaters to avoid exceeding the thermal stress limits. However, this thermal stress sensitivity to steam temperatures and flow rates depends on the start-up sequence due to the relatively large time constants of the heat transfer response in the plant components. In this paper, a coordinated control method of gas turbines and steam turbine is proposed for thermal stress control, which takes into account the large time constants of the heat transfer response. The start-up processes are simulated in order to assess the effect of the coordinated control method. The simulation results of the plant start-ups after several different cool-down times show that the thermal stresses are stably controlled without exceeding the limits. In addition, the steam turbine start-up times are reduced by 22–28% compared with those of the cases where only steam turbine control is applied.


Sign in / Sign up

Export Citation Format

Share Document