Design Optimization of a Low Pressure Steam Turbine Radial Diffuser Using an Evolutionary Algorithm and 3D CFD

Author(s):  
Tom Verstraete ◽  
Johan Prinsier ◽  
Alberto Di Sante ◽  
Stefania Della Gatta ◽  
Lorenzo Cosi

The design of the radial exhaust hood of a low pressure (LP) steam turbine has a strong impact on the overall performance of the LP turbine. A higher pressure recovery of the diffuser will lead to a substantial higher power output of the turbine. One of the most critical aspects in the diffuser design is the steam guide, which guides the flow near the shroud from axial to radial direction and has a high impact on the pressure recovery. This paper presents a method for the design optimization of the steam guide of a steam turbine for industrial power generation and mechanical drive of centrifugal compressors. This development is in the frame of a continuous effort in GE Oil and Gas to develop more efficient steam turbines. An existing baseline exhaust and steam guide design is first analyzed together with the last LP turbine stage with a frozen rotor full 3D Computational Fluid Dynamics (CFD) calculation. The numerical prediction is compared to available steam test turbine data. The new exhaust box and a first attempt new steam guide design are then first analyzed by a CFD computation. The diffuser inlet boundary conditions are extracted from this simulation and used for improving the design of the steam guide. The maximization of the pressure recovery is achieved by means of a numerical optimization method that uses a metamodel assisted differential evolution algorithm in combination with a 3D CFD solver. The profile of the steam guide is parameterized by a Bezier curve. This allows for a wide variety of shapes, respecting the manufacturability constraints of the design. In the design phase it is mandatory to achieve accurate results in terms of performance differences in a reasonable time. The pressure recovery coefficient is therefore computed through the 3D CFD solver excluding the last stage, to reduce the computational burden. Steam tables are used for the accurate prediction of the steam properties. Finally, the optimized design is analyzed by a frozen rotor computation to validate the approach. Also off-design characteristics of the optimized diffuser are shown.

Author(s):  
Tom Verstraete ◽  
Johan Prinsier ◽  
Lorenzo Cosi

The design of the radial exhaust hood of a low pressure (LP) steam turbine has a strong impact on the overall performance of the steam turbine. A higher pressure recovery of the diffuser will lead to a substantial higher power output of the turbine. One of the most critical aspects in the design of such devices is the steam guide, which guides the flow near the shroud from axial to radial direction and has a high impact on the pressure recovery. This paper presents an extension of a design activity previously reported for the design optimization of the steam guide of a steam turbine for industrial power generation and mechanical drive of centrifugal compressors. Whereas this previous work only focused at peak efficiency, this paper will look into the off-design aspect. Peak performance, as usually used as design criteria, will now be replaced by proper off-design criteria guaranteeing a high performance level at both design and off-design conditions. On the basis of these considerations a multi-objective optimization of the steam guide has been performed keeping the exhaust outer casing unchanged. The maximization of the objective functions is achieved by means of a numerical optimization method that uses a metamodel assisted differential evolution algorithm in combination with a CFD solver. The profile of the steam guide is parameterized by a Bezier curve. This allows for a wide variety of shapes respecting the manufacturability constraints of the design. The pressure recovery coefficient is computed over a wide operating range through several RANS computations including the last stage but introducing a mixing plane between the rotating blade and the diffuser inlet to reduce the computational burden. Steam tables are used for the accurate prediction of the steam properties. Finally, the optimized design is analyzed by a frozen rotor computation to validate the approach. Also off-design characteristics of the optimized diffuser are shown.


Author(s):  
Dickson Munyoki ◽  
Markus Schatz ◽  
Damian M. Vogt

The performance of the axial-radial diffuser downstream of the last low-pressure steam turbine stages and the losses occurring subsequently within the exhaust hood directly influences the overall efficiency of a steam power plant. It is estimated that an improvement of the pressure recovery in the diffuser and exhaust hood by 10% translates into 1% of last stage efficiency [11]. While the design of axial-radial diffusers has been the object of quite many studies, the flow phenomena occurring within the exhaust hood have not received much attention in recent years. However, major losses occur due to dissipation within vortices and inability of the hood to properly diffuse the flow. Flow turning from radial to downward flow towards the condenser, especially at the upper part of the hood is essentially the main cause for this. This paper presents a detailed analysis of the losses within the exhaust hood flow for two operating conditions based on numerical results. In order to identify the underlying mechanisms and the locations where dissipation mainly occurs, an approach was followed, whereby the diffuser inflow is divided into different sectors and pressure recovery, dissipation and finally residual kinetic energy of the flow originating from these sectors is calculated at different locations within the hood. Based on this method, the flow from the topmost sectors at the diffuser inlet is found to cause the highest dissipation for both investigated cases. Upon hitting the exhaust hood walls, the flow on the upper part of the diffuser is deflected, forming complex vortices which are stretching into the condenser and interacting with flow originating from other sectors, thereby causing further swirling and generating additional losses. The detailed study of the flow behavior in the exhaust hood and the associated dissipation presents an opportunity for future investigations of efficient geometrical features to be introduced within the hood to improve the flow and hence the overall pressure recovery coefficient.


2020 ◽  
Vol 142 (11) ◽  
Author(s):  
Tommaso Diurno ◽  
Tommaso Fondelli ◽  
Leonardo Nettis ◽  
Nicola Maceli ◽  
Lorenzo Arcangeli ◽  
...  

Abstract Nowadays, the rising interest in using renewable energy for thermal power generation has led to radical changes in steam turbine design practice and operability. Modern steam turbines are required to operate with greater flexibility due to rapid load changes, fast start-up, and frequent shutdowns. This has given rise to great challenges to the exhaust hood system design, which has a great influence on the overall turbine performance converting the kinetic energy leaving the last stage of low-pressure turbine into static pressure. The radial hoods are characterized by a complex aerodynamic behavior since the flow turns by 90 deg in a very short distance and this generates a highly rotational flow structure within the diffuser and exhaust hood outer casing, moreover, the adverse pressure gradient can promote the flow separation drastically reducing the hood recovery performance. For these reasons, it is fundamental to design the exhaust system in order to ensure a good pressure recovery under all the machine operating conditions. This paper presents a design of experiment (DOE) analysis on a low-pressure steam turbine exhaust hood through computational fluid dynamics (CFD) simulations. A parametric model of an axial-radial exhaust hood was developed, and a sensitivity of exhaust hood performance as a function of key geometrical parameters was carried out, with the aim of optimizing the pressure recovery coefficient and minimizing the overall dimensions of the exhaust casing. Since hood performance strongly depends on a proper coupling with the turbine rear stage, such a stage was modeled using the so-called mixing-plane approach to couple both stator–rotor and rotor-diffuser interfaces. A detailed analysis of the flow field in the exhaust hood in the different configurations was performed, detecting the swirling structures responsible for the energy dissipation in each simulation, as well as correlating the flow field with the pressure recovery coefficient.


Author(s):  
Tommaso Diurno ◽  
Tommaso Fondelli ◽  
Leonardo Nettis ◽  
Nicola Maceli ◽  
Lorenzo Arcangeli ◽  
...  

Abstract Nowadays, the rising interest in using renewable energy for thermal power generation has led to radical changes in steam turbine design practice and operability. Modern steam turbines are required to operate with greater flexibility due to rapid load changes, fast start-up, and frequent shutdowns. This has given rise to great challenges to the exhaust hood system design, which has a great influence on the overall turbine performance converting the kinetic energy leaving the last stage of LP turbine into static pressure. The radial hoods are characterized by a complex aerodynamic behavior since the flow turns by 90° in a very short distance and this generates a highly rotational flow structure within the diffuser and exhaust hood outer casing, moreover, the adverse pressure gradient can promote the flow separation drastically reducing the hood recovery performance. For these reasons it is fundamental to design the exhaust system in order to ensure a good pressure recovery under all the machine operating conditions. This paper presents a Design of Experiment analysis on a low-pressure steam turbine exhaust hood through CFD simulations. A parametric model of an axial-radial exhaust hood was developed and a sensitivity of exhaust hood performance as a function of key geometrical parameters was carried out, with the aim of optimizing the pressure recovery coefficient and minimizing the overall dimensions of the exhaust casing. Since hood performance strongly depends on a proper coupling with the turbine rear stage, such a stage was modeled using the so-called mixing-plane approach to couple both stator-rotor and rotor-diffuser interfaces. A detailed analysis of the flow field in the exhaust hood in the different configurations was performed, detecting the swirling structures responsible for the energy dissipation in each simulation, as well as correlating the flow field with the pressure recovery coefficient.


Author(s):  
Kevin Cremanns ◽  
Dirk Roos ◽  
Arne Graßmann

In order to meet the requirements of rising energy demand, one goal in the design process of modern steam turbines is to achieve high efficiencies. A major gain in efficiency is expected from the optimization of the last stage and the subsequent diffuser of a low pressure turbine (LP). The aim of such optimization is to minimize the losses due to separations or inefficient blade or diffuser design. In the usual design process, as is state of the art in the industry, the last stage of the LP and the diffuser is designed and optimized sequentially. The potential physical coupling effects are not considered. Therefore the aim of this paper is to perform both a sequential and coupled optimization of a low pressure steam turbine followed by an axial radial diffuser and subsequently to compare results. In addition to the flow simulation, mechanical and modal analysis is also carried out in order to satisfy the constraints regarding the natural frequencies and stresses. This permits the use of a meta-model, which allows very time efficient three dimensional (3D) calculations to account for all flow field effects.


Author(s):  
Joerg Schuerhoff ◽  
Andrei Ghicov ◽  
Karsten Sattler

Blades for low pressure steam turbines operate in flows of saturated steam containing water droplets. The water droplets can impact rotating last stage blades mainly on the leading edge suction sides with relative velocities up to several hundred meters per second. Especially on large blades the high impact energy of the droplets can lead to a material loss particularly at the inlet edges close to the blade tips. This effect is well known as “water droplet erosion”. The steam turbine manufacturer use several techniques, like welding or brazing of inlays made of erosion resistant materials to reduce the material loss. Selective, local hardening of the blade leading edges is the preferred solution for new apparatus Siemens steam turbines. A high protection effect combined with high process stability can be ensured with this Siemens hardening technique. Furthermore the heat input and therewith the geometrical change potential is relatively low. The process is flexible and can be adapted to different blade sizes and the required size of the hardened zones. Siemens collected many years of positive operational experience with this protection measure. State of the art turbine blades often have to be developed with precipitation hardening steels and/or a shroud design to fulfill the high operational requirements. A controlled hardening of the inlet edges of such steam turbine blades is difficult if not impossible with conventional methods like flame hardening. The Siemens steam turbine factory in Muelheim, Germany installed a fully automated laser treatment facility equipped with two co-operating robots and two 6 kW high power diode laser to enable the in-house hardening of such blades. Several blade designs from power generation and industrial turbines were successfully laser treated within the first year in operation. This paper describes generally the setup of the laser treatment facility and the application for low pressure steam turbine blades made of precipitation hardening steels and blades with shroud design, including the post laser heat treatments.


Author(s):  
Benjamin Megerle ◽  
Timothy Stephen Rice ◽  
Ivan McBean ◽  
Peter Ott

Non-synchronous excitation under low volume operation is a major risk to the mechanical integrity of last stage moving blades (LSMBs) in low-pressure (LP) steam turbines. These vibrations are often induced by a rotating aerodynamic instability similar to rotating stall in compressors. Currently extensive validation of new blade designs is required to clarify whether they are subjected to the risk of not admissible blade vibration. Such tests are usually performed at the end of a blade development project. If resonance occurs a costly redesign is required, which may also lead to a reduction of performance. It is therefore of great interest to be able to predict correctly the unsteady flow phenomena and their effects. Detailed unsteady pressure measurements have been performed in a single stage model steam turbine operated with air under ventilation conditions. 3D CFD has been applied to simulate the unsteady flow in the air model turbine. It has been shown that the simulation reproduces well the characteristics of the phenomena observed in the tests. This methodology has been transferred to more realistic steam turbine multi stage environment. The numerical results have been validated with measurement data from a multi stage model LP steam turbine operated with steam. Measurement and numerical simulation show agreement with respect to the global flow field, the number of stall cells and the intensity of the rotating excitation mechanism. Furthermore, the air model turbine and model steam turbine numerical and measurement results are compared. It is demonstrated that the air model turbine is a suitable vehicle to investigate the unsteady effects found in a steam turbine.


Author(s):  
Peter Stein ◽  
Dirk Telschow ◽  
Frederic Lamarque ◽  
Nuncio Colitto

Since many years the diffuser and exhaust of low pressure (LP) turbines have been in the focus of turbine development and accordingly broadly discussed within the scientific community. The pressure recovery gained within the diffuser significantly contributes to the turbine performance and therefore plenty of care is taken in investigations of the flow as well as optimization within this part of the turbine. However on a plant level the component following the LP turbine is the condenser, which is connected by the condenser neck. Typically the condenser neck is not fully designed to provide additional enthalpy recovery. Due to plant arrangement reasons, often it is full of built-ins like stiffening struts, feed-water heaters, extraction pipes, steam dump devices and others. It is vital to minimize the pressure losses across the condenser neck, in order to keep performance benefit, previously gained within the diffuser. As a general rule, each mbar of total pressure loss in a condenser neck may reduce the gross power output up to 0.1%. While turbines usually follow a modular approach, the condenser is typically designed plant specific. Therefore, on a plant level it is crucial to identify and evaluate the loss contributors and develop processes and tools which allow an accurate and efficient design process for an optimized condenser neck design. This needs to be performed as a coupled modelling approach, as both, turbine and condenser flow interact with each other. 3-D CFD tools enable a deep insight into the flow field and help to locally optimize the design, as they help to identify local losses and this even for small geometrical design changes. Unfortunately these tools are costly with respect to computational time and resources, if they are used to analyze a full condenser neck with all built-ins. Here 1-D modelling approaches can help to close the gap, as they can provide fast feedback, e.g. in a project tender phase, or can allow to quickly analyze design changes. For this they need a proper calibration and validation. This publication discusses the CFD modelling of a LP steam turbine coupled to a condenser neck and the validity of such calculations against measurement data. In the second publication (Part 2) a simplification of the gained information to a 1-D modelling approach will be discussed.


Author(s):  
Yogini Patel ◽  
Giteshkumar Patel ◽  
Teemu Turunen-Saaresti

With the tremendous role played by steam turbines in power generation cycle, it is essential to understand the flow field of condensing steam flow in a steam turbine to design an energy efficient turbine because condensation at low pressure (LP) turbine introduces extra losses, and erosion in turbine blades. The turbulence has a leading role in condensing phenomena which involve a rapid change of mass, momentum and heat transfer. The paper presents the influence of turbulence modelling on non-equilibrium condensing steam flows in a LP steam turbine stage adopting CFD code. The simulations were conducted using the Eulerian-Eulerian approach, based on Reynolds-averaged Navier-Stokes equations coupled with a two equation turbulence model, which is included with nucleation and droplet growth model for the liquid phase. The SST k-ω model was modified, and the modifications were implemented in the CFD code. First, the performance of the modified model is validated with nozzles and turbine cascade cases. The effect of turbulence modelling on the wet-steam properties and the loss mechanism for the 3D stator-rotor stage is discussed. The presented results show that an accurate computational prediction of condensing steam flow requires the turbulence to be modelled accurately.


Author(s):  
Tadashi Tanuma ◽  
Yasuhiro Sasao ◽  
Satoru Yamamoto ◽  
Shinji Takada ◽  
Yoshiki Niizeki ◽  
...  

Low pressure (LP) exhaust hoods are an important component of steam turbines. The aerodynamic loss of LP exhaust hoods is almost the same as those of the stator and rotor blading in LP steam turbines. Designing high performance LP exhaust hoods should lead further enhancement of steam turbine efficiency. This paper presents the results of exhaust hood computational fluid dynamics (CFD) analyses using last stage exit velocity distributions measured in a full-scale development steam turbine as the inlet boundary condition to improve the accuracy of the CFD analysis. One of the main difficulties in predicting the aerodynamic performance of the exhaust hoods is the unsteady boundary layer separation of exhaust hood diffusers. A highly accurate unsteady numerical analysis is introduced in order to simulate the diffuser flows in LP exhaust hoods. Compressible Navier-Stokes equations and mathematical models for nonequilibrium condensation are solved using the high-order high-resolution finite-difference method based on the fourth-order compact MUSCL TVD scheme, Roe’s approximate Riemann solver, and the LU-SGS scheme. The SST turbulence model is also solved for evaluating the eddy viscosity. The computational results were validated using the measurement data, and the present CFD method was proven to be suitable as a useful tool for determining optimum three-dimensional designs of LP turbine exhaust diffusers.


Sign in / Sign up

Export Citation Format

Share Document