Numerical Investigation of Exhaust Diffuser Performances in Low Pressure Turbine Casings

Author(s):  
Tadashi Tanuma ◽  
Yasuhiro Sasao ◽  
Satoru Yamamoto ◽  
Shinji Takada ◽  
Yoshiki Niizeki ◽  
...  

Low pressure (LP) exhaust hoods are an important component of steam turbines. The aerodynamic loss of LP exhaust hoods is almost the same as those of the stator and rotor blading in LP steam turbines. Designing high performance LP exhaust hoods should lead further enhancement of steam turbine efficiency. This paper presents the results of exhaust hood computational fluid dynamics (CFD) analyses using last stage exit velocity distributions measured in a full-scale development steam turbine as the inlet boundary condition to improve the accuracy of the CFD analysis. One of the main difficulties in predicting the aerodynamic performance of the exhaust hoods is the unsteady boundary layer separation of exhaust hood diffusers. A highly accurate unsteady numerical analysis is introduced in order to simulate the diffuser flows in LP exhaust hoods. Compressible Navier-Stokes equations and mathematical models for nonequilibrium condensation are solved using the high-order high-resolution finite-difference method based on the fourth-order compact MUSCL TVD scheme, Roe’s approximate Riemann solver, and the LU-SGS scheme. The SST turbulence model is also solved for evaluating the eddy viscosity. The computational results were validated using the measurement data, and the present CFD method was proven to be suitable as a useful tool for determining optimum three-dimensional designs of LP turbine exhaust diffusers.

Author(s):  
Kevin Cremanns ◽  
Dirk Roos ◽  
Arne Graßmann

In order to meet the requirements of rising energy demand, one goal in the design process of modern steam turbines is to achieve high efficiencies. A major gain in efficiency is expected from the optimization of the last stage and the subsequent diffuser of a low pressure turbine (LP). The aim of such optimization is to minimize the losses due to separations or inefficient blade or diffuser design. In the usual design process, as is state of the art in the industry, the last stage of the LP and the diffuser is designed and optimized sequentially. The potential physical coupling effects are not considered. Therefore the aim of this paper is to perform both a sequential and coupled optimization of a low pressure steam turbine followed by an axial radial diffuser and subsequently to compare results. In addition to the flow simulation, mechanical and modal analysis is also carried out in order to satisfy the constraints regarding the natural frequencies and stresses. This permits the use of a meta-model, which allows very time efficient three dimensional (3D) calculations to account for all flow field effects.


Author(s):  
Benjamin Megerle ◽  
Timothy Stephen Rice ◽  
Ivan McBean ◽  
Peter Ott

Non-synchronous excitation under low volume operation is a major risk to the mechanical integrity of last stage moving blades (LSMBs) in low-pressure (LP) steam turbines. These vibrations are often induced by a rotating aerodynamic instability similar to rotating stall in compressors. Currently extensive validation of new blade designs is required to clarify whether they are subjected to the risk of not admissible blade vibration. Such tests are usually performed at the end of a blade development project. If resonance occurs a costly redesign is required, which may also lead to a reduction of performance. It is therefore of great interest to be able to predict correctly the unsteady flow phenomena and their effects. Detailed unsteady pressure measurements have been performed in a single stage model steam turbine operated with air under ventilation conditions. 3D CFD has been applied to simulate the unsteady flow in the air model turbine. It has been shown that the simulation reproduces well the characteristics of the phenomena observed in the tests. This methodology has been transferred to more realistic steam turbine multi stage environment. The numerical results have been validated with measurement data from a multi stage model LP steam turbine operated with steam. Measurement and numerical simulation show agreement with respect to the global flow field, the number of stall cells and the intensity of the rotating excitation mechanism. Furthermore, the air model turbine and model steam turbine numerical and measurement results are compared. It is demonstrated that the air model turbine is a suitable vehicle to investigate the unsteady effects found in a steam turbine.


Author(s):  
Yogini Patel ◽  
Giteshkumar Patel ◽  
Teemu Turunen-Saaresti

With the tremendous role played by steam turbines in power generation cycle, it is essential to understand the flow field of condensing steam flow in a steam turbine to design an energy efficient turbine because condensation at low pressure (LP) turbine introduces extra losses, and erosion in turbine blades. The turbulence has a leading role in condensing phenomena which involve a rapid change of mass, momentum and heat transfer. The paper presents the influence of turbulence modelling on non-equilibrium condensing steam flows in a LP steam turbine stage adopting CFD code. The simulations were conducted using the Eulerian-Eulerian approach, based on Reynolds-averaged Navier-Stokes equations coupled with a two equation turbulence model, which is included with nucleation and droplet growth model for the liquid phase. The SST k-ω model was modified, and the modifications were implemented in the CFD code. First, the performance of the modified model is validated with nozzles and turbine cascade cases. The effect of turbulence modelling on the wet-steam properties and the loss mechanism for the 3D stator-rotor stage is discussed. The presented results show that an accurate computational prediction of condensing steam flow requires the turbulence to be modelled accurately.


Author(s):  
M. Häfele ◽  
J. Starzmann ◽  
M. Grübel ◽  
M. Schatz ◽  
D. M. Vogt ◽  
...  

A numerical study on the flow in a three stage low pressure industrial steam turbine with conical friction bolts in the last stage and lacing wires in the penultimate stage is presented and analyzed. Structured high-resolution hexahedral meshes are used for all three stages and the meshing methodology is shown for the rotor with friction bolts and blade reinforcements. Modern three-dimensional CFD with a non-equilibrium wet steam model is used to examine the aero-thermodynamic effects of the part-span connectors. A performance assessment of the coupled blades at part load, design and overload condition is presented and compared with measurement data from an industrial steam turbine test rig. Detailed flow field analyses and a comparison of blade loading between configurations with and without part-span connectors are presented in this paper. The results show significant interaction of the cross flow vortex along the part-span connector with the blade passage flow causing aerodynamic losses. This is the first time that part-span connectors are being analyzed using a non-equilibrium wet steam model. It is shown that additional wetness losses are induced by these elements.


Author(s):  
Zoe Burton ◽  
Simon Hogg ◽  
Grant L. Ingram

It has been widely recognized for some decades that it is essential to accurately represent the strong coupling between the last stage blades (LSB) and the diffuser inlet, in order to correctly capture the flow through the exhaust hoods of steam turbine low pressure cylinders. This applies to any form of simulation of the flow, i.e., numerical or experimental. The exhaust hood flow structure is highly three-dimensional and appropriate coupling will enable the important influence of this asymmetry to be transferred to the rotor. This, however, presents challenges as the calculation size grows rapidly when the full annulus is calculated. The size of the simulation means researchers are constantly searching for methods to reduce the computational effort without compromising solution accuracy. However, this can result in excessive computational demands in numerical simulations. Unsteady full-annulus CFD calculation will remain infeasible for routine design calculations for the foreseeable future. More computationally efficient methods for coupling the unsteady rotor flow to the hood flow are required that bring computational expense within realizable limits while still maintaining sufficient accuracy for meaningful design calculations. Research activity in this area is focused on developing new methods and techniques to improve accuracy and reduce computational expense. A novel approach for coupling the turbine last stage to the exhaust hood employing the nonlinear harmonic (NLH) method is presented in this paper. The generic, IP free, exhaust hood and last stage blade geometries from Burton et al. (2012. “A Generic Low Pressure Exhaust Diffuser for Steam Turbine Research,”Proceedings of the ASME Turbo Expo, Copenhagen, Denmark, Paper No. GT2012-68485) that are representative of modern designs, are used to demonstrate the effectiveness of the method. This is achieved by comparing results obtained with the NLH to those obtained with a more conventional mixing-plane approach. The results show that the circumferential asymmetry can be successfully transferred in both directions between the exhaust hood flow and that through the LSB, by using the NLH. This paper also suggests that for exhaust hoods of generous axial length, little change in Cp is observed when the circumferential asymmetry is captured. However, the predicted flow structure is significantly different, which will influence the design and placement of the exhaust hood internal “furniture.”


Author(s):  
Juri Bellucci ◽  
Lorenzo Peruzzi ◽  
Andrea Arnone ◽  
Lorenzo Arcangeli ◽  
Nicola Maceli

Abstract This work aims to deepen the understanding of the aerodynamic behavior and the performance of a low pressure steam turbine module. Numerical and experimental results obtained on a three-stage low pressure steam turbine (LPT) module are presented. The selected geometry is representative of the state-of-the-art of low pressure sections for small steam turbines. The test vehicle was designed and operated in different operating conditions with dry and wet steam. Different types of measurements are performed for the global performance estimation of the whole turbine and for the detailed analysis of the flow field. Steady and unsteady CFD analyses have been performed by means of viscous, three-dimensional simulations adopting a real gas, equilibrium steam model. Measured inlet/outlet boundary conditions are used for the computations. The fidelity of the computational setup is proven by comparing computational and experimental results. Main performance curves and span-wise distributions show a good agreement in terms of both shape of curves/distributions and absolute values. Finally, an attempt is done to point out where losses are generated and the physical mechanisms involved are investigated and discussed in details.


2014 ◽  
Vol 136 (9) ◽  
Author(s):  
Benjamin Megerle ◽  
Ivan McBean ◽  
Timothy Stephen Rice ◽  
Peter Ott

Nonsynchronous excitation under low volume operation is a major risk to the mechanical integrity of last stage moving blades (LSMBs) in low-pressure (LP) steam turbines. These vibrations are often induced by a rotating aerodynamic instability similar to rotating stall in compressors. Currently extensive validation of new blade designs is required to clarify whether they are subjected to the risk of not admissible blade vibration. Such tests are usually performed at the end of a blade development project. If resonance occurs a costly redesign is required, which may also lead to a reduction of performance. It is therefore of great interest to be able to predict correctly the unsteady flow phenomena and their effects. Detailed unsteady pressure measurements have been performed in a single stage model steam turbine operated with air under ventilation conditions. 3D computational fluid dynamics (CFD) has been applied to simulate the unsteady flow in the air model turbine. It has been shown that the simulation reproduces well the characteristics of the phenomena observed in the tests. This methodology has been transferred to more realistic steam turbine multistage environment. The numerical results have been validated with measurement data from a multistage model LP steam turbine operated with steam. Measurement and numerical simulation show agreement with respect to the global flow field, the number of stall cells and the intensity of the rotating excitation mechanism. Furthermore, the air model turbine and model steam turbine numerical and measurement results are compared. It is demonstrated that the air model turbine is a suitable vehicle to investigate the unsteady effects found in a steam turbine.


Author(s):  
Shunsuke Mizumi ◽  
Kouji Ishibashi

The efficiency of a steam turbine is significantly influenced by pressure recovery performance of its low-pressure exhaust hood; hence it is important to specify the cause of loss generation and to devise improved structures. The performance of the exhaust hood is greatly influenced by many structural factors such as the size of its outer casing, design of the diffuser parts and arrangement of internal supports. Ideally, it would be preferable to take all those influential factors into consideration in designing an exhaust hood. However, it is neither cost-effective nor practicable to take everything into consideration at the same time, while it is mandatory to obtain a better shape in performance within reasonable time. For this reason, it is necessary to reach a compromise to some extent between the ideal and the realistic design methods. In the present study, we propose the efficient design method of the downstream type low-pressure exhaust hood for large-scale steam turbines, utilizing the performance charts based on the extensive CFD parameter surveys.


Machines ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 13
Author(s):  
Yuhang Yang ◽  
Zhiqiao Dong ◽  
Yuquan Meng ◽  
Chenhui Shao

High-fidelity characterization and effective monitoring of spatial and spatiotemporal processes are crucial for high-performance quality control of many manufacturing processes and systems in the era of smart manufacturing. Although the recent development in measurement technologies has made it possible to acquire high-resolution three-dimensional (3D) surface measurement data, it is generally expensive and time-consuming to use such technologies in real-world production settings. Data-driven approaches that stem from statistics and machine learning can potentially enable intelligent, cost-effective surface measurement and thus allow manufacturers to use high-resolution surface data for better decision-making without introducing substantial production cost induced by data acquisition. Among these methods, spatial and spatiotemporal interpolation techniques can draw inferences about unmeasured locations on a surface using the measurement of other locations, thus decreasing the measurement cost and time. However, interpolation methods are very sensitive to the availability of measurement data, and their performances largely depend on the measurement scheme or the sampling design, i.e., how to allocate measurement efforts. As such, sampling design is considered to be another important field that enables intelligent surface measurement. This paper reviews and summarizes the state-of-the-art research in interpolation and sampling design for surface measurement in varied manufacturing applications. Research gaps and future research directions are also identified and can serve as a fundamental guideline to industrial practitioners and researchers for future studies in these areas.


Author(s):  
Dickson Munyoki ◽  
Markus Schatz ◽  
Damian M. Vogt

The performance of the axial-radial diffuser downstream of the last low-pressure steam turbine stages and the losses occurring subsequently within the exhaust hood directly influences the overall efficiency of a steam power plant. It is estimated that an improvement of the pressure recovery in the diffuser and exhaust hood by 10% translates into 1% of last stage efficiency [11]. While the design of axial-radial diffusers has been the object of quite many studies, the flow phenomena occurring within the exhaust hood have not received much attention in recent years. However, major losses occur due to dissipation within vortices and inability of the hood to properly diffuse the flow. Flow turning from radial to downward flow towards the condenser, especially at the upper part of the hood is essentially the main cause for this. This paper presents a detailed analysis of the losses within the exhaust hood flow for two operating conditions based on numerical results. In order to identify the underlying mechanisms and the locations where dissipation mainly occurs, an approach was followed, whereby the diffuser inflow is divided into different sectors and pressure recovery, dissipation and finally residual kinetic energy of the flow originating from these sectors is calculated at different locations within the hood. Based on this method, the flow from the topmost sectors at the diffuser inlet is found to cause the highest dissipation for both investigated cases. Upon hitting the exhaust hood walls, the flow on the upper part of the diffuser is deflected, forming complex vortices which are stretching into the condenser and interacting with flow originating from other sectors, thereby causing further swirling and generating additional losses. The detailed study of the flow behavior in the exhaust hood and the associated dissipation presents an opportunity for future investigations of efficient geometrical features to be introduced within the hood to improve the flow and hence the overall pressure recovery coefficient.


Sign in / Sign up

Export Citation Format

Share Document