Evolution of Generic Vanelets Applied to a High Pressure Compressor

Author(s):  
Andreas Loos ◽  
Tobias Mayenberger ◽  
Florian Danner ◽  
Hans-Peter Kau

The flow field of high pressure compressors is strongly influenced by secondary flow phenomena which lead to performance degradations. A significant fraction of the associated losses arises from tip as well as hub clearance vortices and their interaction with the main flow. In order to decrease the negative effect of clearance vortices, the application of vanelets, winglet-like structures attached to the tips of a cantilevered stator, is studied within the present paper. Different vanelets of generic design are applied to the stator and evaluated with respect to their aerodynamic effect by comparison against a datum configuration. The model comprises the investigated stator enclosed between two rotating blade rows. Detailed insight into the underlying phenomena is provided by numerical investigations with the compressible Reynolds-averaged Navier-Stokes equations. The structures led to an increased efficiency at the aerodynamic design point due to the suppression of the clearance mass flow in combination with a reduced vortex cross section. Under strongly throttled conditions a so called vanelet corner stall developed, which induced blockage near hub. Thus the main flow was displaced towards casing enhancing stable operation of the downstream rotor. Surge margin was consequently increased.

1998 ◽  
Vol 14 (3) ◽  
pp. 153-159 ◽  
Author(s):  
Chou-Jiu Tsai ◽  
Ger-Jyh Chen

ABSTRACTIn this study, fluid flow around bluff bodies are studied to examine the vortex shedding phenomenon in conjuction with the geometrical shapes of these vortex shedders. These flow phenomena are numerically simulated. A finite volume method is employed to solve the incompressible two-dimensional Navier-Stokes equations. Thus, quantitative descriptions of the vortex shedding phenomenon in the near wake were made, which lead to a detailed description of the vortex shedding mechanism. Streamline contours, figures of lift coefficent, and figures of drag coefficent in various time, are presented, respectively, for a physical description.


Author(s):  
Felix Fischer ◽  
Andreas Rhein ◽  
Katharina Schmitz

Abstract Hydraulic pumps, which reach pressures up to 3000 bar, are often realized as plunger-piston type pumps. In the case of a common-rail pump for diesel injection systems, the plunger is driven by a cam-tappet construction and the contact during suction stroke is maintained by a helical spring. Many hydraulic piston-based high pressure pumps include gap seals, which are formed by small clearances between the two surfaces of the piston and the bushing. Usually the gap height is in the magnitude of several micrometers. Typical radial gaps are between 0.5 and 1 per mil of the nominal diameter. These gap seals are used to allow and maintain pressure build up in the piston chamber. When the gap is pressurized, a special flow regime is reached. For the description of this particular flow the Reynolds equation, which is a simplification of the Navier-Stokes equations, can be used as done in the state of the art. Furthermore, if the pressure in the gap is high enough — 500 bar and above — fluid-structure interactions must be taken into account. Pressure levels above 1500 or 2000 bar indicate the necessity for solving the energy equation of the fluid phase and the rigid bodies surrounding it. In any case, the fluid properties such as density and viscosity, have to be modelled in a pressure dependent manner. This means, a compressible flow is described in the sealing gap. Viscosity changes in magnitudes while density remains in the same magnitude, but nevertheless changes about 30 %. These facts must be taken into account when solving the Reynolds equation. In this paper the authors work out that the Reynolds equation is not suitable for every piston-bushing gap seal in hydraulic applications. It will be shown that remarkable errors are made, when the inertia terms in the Navier-Stokes equations are neglected, especially in high pressure applications. To work out the influence of the inertia terms in these flows, two simulation models are built up and calculated for the physical problem. One calculates the compressible Reynolds equation neglecting the fluid inertia. The other model, taking the fluid inertia into account, calculates the coupled Navier-Stokes equations on the same geometrical boundaries. Here, the so called SIMPLE (Semi-Implicit Method for Pressure Linked Equations) algorithm is used. The discretization is realized with the Finite Volume Method. Afterwards, the solutions of both models are compared to investigate the influence of the inertia terms on the flow in these specific high pressure applications.


Author(s):  
Hong Won Kim ◽  
Jae Hoon Chung ◽  
Hyo Seong Lee ◽  
Min Ouk Choi

The primary design goal of a compressor is focused on improving efficiency. Secondary objective is to widen the compressor’s operating range. This paper presents a numerical and experimental investigation of the influence of the bleed slot to enlarge operating range for the 1.2MW class centrifugal compressor installed in a turbocharger. The main design parameters of the bleed slot casing are upstream slot position, inlet pipe slope, downstream slot position and width. The DOE (design of experiment) method was carried out to optimize the casing design. Numerical analyses were done by the commercial code ANSYS-CFX based on the three dimensional Reynolds-averaged Navier-Stokes equations. From the analysis, as the downstream slot position and width are smaller and upstream position is located away from impeller inlet, efficiency and pressure ratio are increased. Experimental works were done with and without the bleed slot casing. The simulation results were in good agreement with the test data. In case without the bleed slot casing, the surge margin value came out to be only 11.8% but with the optimized bleed slot design, the surge margin reached 23%. Therefore, the surge margin increase of 11.2% was achieved.


Author(s):  
Nadia A. S. Smith ◽  
Stephen S. L. Peppin ◽  
Ángel M. Ramos

High-pressure freezing processes are a novel emerging technology in food processing, offering significant improvements to the quality of frozen foods. To be able to simulate plateau times and thermal history under different conditions, in this work, we present a generalized enthalpy model of the high-pressure shift freezing process. The model includes the effects of pressure on conservation of enthalpy and incorporates the freezing point depression of non-dilute food samples. In addition, the significant heat-transfer effects of convection in the pressurizing medium are accounted for by solving the two-dimensional Navier–Stokes equations. We run the model for several numerical tests where the food sample is agar gel, and find good agreement with experimental data from the literature.


2013 ◽  
Vol 694-697 ◽  
pp. 56-60
Author(s):  
Yue Jun Ma ◽  
Ji Tao Zhao ◽  
Yu Min Yang

In the paper, on the basis of three-dimensional Reynolds-averaged Navier-Stokes equations and the RNG κ-ε turbulence model, adopting Three-dimensional unstructured grid and pressure connection the implicit correction SIMPLEC algorithm, and using MRF model which is supported by Fluent, this paper carries out numerical simulation of the internal flow of the centrifugal pump in different operation points. According to the results of numerical simulation, this paper analyzes the bad flow phenomena of the centrifugal pump, and puts forward suggests about configuration perfected of the centrifugal pump. In addition, this paper is also predicted the experimental value of the centrifugal pump performance, which is corresponding well with the measured value.


Author(s):  
Craig I. Smith ◽  
Dongil Chang ◽  
Stavros Tavoularis

The temperature of the flow entering a high-pressure turbine stage is inherently non-uniform, as it is produced by several discrete, azimuthally-distributed combustors. In general, however, industrial simulations assume inlet temperature uniformity to simplify the preparation process and reduce computation time. The effects of a non-uniform inlet field on the performance of a commercial, transonic, single-stage, high-pressure, axial turbine with a curved inlet duct have been investigated numerically by performing URANS (Unsteady Reynolds-Averaged Navier-Stokes equations) simulations with the SST (Shear Stress Transport) turbulence model. By adjusting the alignment of the experimentally-based inlet temperature field with respect to the stator vanes, two clocking configurations were generated: an aligned case, in which each hot streak impinged on a vane and a misaligned case, in which each hot streak passed between two vanes. In the aligned configuration, the hot streaks produced higher time-averaged heat load on the vanes and lower heat load on the blades. As the aligned hot streaks impinged on the stator vanes, they also spread spanwise due to the actions of the casing passage vortices and the radial pressure gradient; this resulted in a stream entering the rotor with relatively low temperature variations. The misaligned hot streaks were convected undisturbed past the relatively cool vane section. Relatively high time-averaged enthalpy values were found to occur on the pressure side of the blades in the misaligned configuration. The non-uniformity of the time-averaged enthalpy on the blade surfaces was lower in the aligned configuration. The flow exiting the rotor section was much less non-uniform in the aligned case, but differences in calculated efficiency were not significant.


Author(s):  
David Jon Furbish

Many geological flows involve turbulence, wherein the velocity field involves complex, fluctuating motions superimposed on a mean motion. Flows in natural river channels are virtually always turbulent. Magma flow in dikes and sills, and lava flows, can be turbulent. Atmospheric flows involving eolian transport are turbulent. The complex, convective overturning of fluid in a magma chamber or geyser is a form of turbulence. Thus, a description of the basic qualities of these complex flows is essential for understanding many geological flow phenomena. Turbulent flows generally are associated with large Reynolds numbers. Recall from Chapter 5 that the Reynolds number Re is a measure of the ratio of inertial to viscous forces acting on a fluid element, . . . Re = ρUL/μ . . . . . . (14.1) . . . where the characteristic velocity U and length L are defined in terms of the particular flow system. Thus, turbulence is typically associated, for given fluid density ρ and viscosity μ, with high-speed flows (although we must be careful in applying this generality to thermally driven convective motions; see Chapter 16). A simple, visual illustration of this occurs when smoke rises from a cigar within otherwise calm, surrounding air. The smoke acts as a flow tracer. Smoke molecules at the cigar tip start from rest, since they are initially attached to the cigar. Upward fluid motion, as traced by the smoke, initially is of low speed, and viscous forces have a relatively important influence on its behavior. The flow is laminar; smoke streaklines are smooth and locally parallel. But as the flow accelerates upward, it typically reaches a point where viscous forces are no longer sufficient to damp out destabilizing effects of growing inertial forces, and the flow becomes turbulent, manifest as whirling, swirling fluid motions (see Tolkien [1937]). Throughout this chapter we will consider only incompressible Newtonian fluids. Unfortunately, the complexity of turbulent fluid motions precludes directly using the Navier–Stokes equations to describe them. Instead, we will adopt a procedure whereby the Navier–Stokes equations are recast in terms of temporally averaged or spatially averaged values of velocity and pressure, and fluctuations about these averages.


2019 ◽  
Vol 97 ◽  
pp. 05004
Author(s):  
Vadim Akhmetov

In the framework of linear theory, the stability of counter vortex flows with respect to non-axisymmetric perturbations is investigated numerically. The main flow field calculation results have been obtained as the solutions of the Navier-Stokes equations. The amplification coefficients are calculated, the regions of instability of the flow are defined.


2013 ◽  
Vol 284-287 ◽  
pp. 795-799
Author(s):  
Fa Qing Fan ◽  
Pei Yong Wang

High-speed and high-temperature are the characteristics of the flow field in scramjet engine; the regular non-slip wall boundary condition requires zero speed at wall; in the same time, the material temperature limit does not allow high wall temperature; therefore the velocity gradient and temperature gradient in the engine boundary layer are huge. If these gradients are too large, the traditional assumption of the local thermal equilibrium in the fluid will fail, the Navier-Stokes equations are no longer valid in the boundary layer. For the first time, the non-equilibrium flow phenomena in Scramjet engine is studied here. Appropriate turbulence model and fine grid are used to analyze the turbulent boundary layer of the Hyshot scramjet engine with three different operating conditions. The result of the CFD simulation shows that the local Knudsen number in the engine boundary layer is greater than the critical value with the operating conditions 40Km/Ma8 and 30Km/Ma8; they are non-equilibrium flow and the Navier-Stokes equations fails. Special treatment of the boundary conditions are needed for these kinds of flow. With the operating condition of 20Km/Ma6, the local thermal equilibrium condition is observed and conventional CFD method is valid.


Author(s):  
Andrei A. Kornev

AbstractA system of Navier-Stokes equations with a right-hand side is considered in the case when the system approximately describes the motion of a thin layer of a viscous incompressible fluid in an annular domain under the action of external electromagnetic force. The problem possesses an unstable two-stream nonstationary main flow and a set of quasistationary solutions of vortex type for the tested range of parameters. A method of study of the general dynamic pattern is proposed in the paper. The method is based on the construction of control boundary conditions specified on the internal boundary of the annulus and providing the stabilization of considered unstable modes. The problem of boundary stabilization of the main and secondary flows is also solved numerically and we obtained that it is sufficient to take into account only a part of unstable modes in the construction of stabilizing conditions for the main flow. The method based on the partial stabilization of the main flow is first proposed for stabilization of secondary flows, which essentially simplifies the implementation of the algorithm. Formulations of the problems and numerical algorithms are presented.


Sign in / Sign up

Export Citation Format

Share Document