Effects of Burner Interaction on NOx Emission From Swirl Premix Burner in a Gas Turbine Combustor

Author(s):  
Cheon Hyeon Cho ◽  
Chae Hoon Sohn ◽  
Ju Hyeong Cho ◽  
Han Seok Kim

Flame interaction between neighboring burners in a gas turbine combustor is investigated numerically for pursuit of its effect on NOx emission from the burners. In a model chamber or liner, EV burners with double cone are installed. Two burners with the same rotating direction of air stream are adopted and the distance between them is variable from 74.2 mm to 222.6 mm by the step size of 37.1 mm. Gaseous methane and air are adopted as fuel and oxidizer, respectively. From steady-state numerical analyses, flow, temperature, and NO concentration fields are calculated in all computational cases to find their correlation with NOx formation. NOx emission is evaluated at the exit of the model chamber with two burners as a function of burner distance and compared with that from a single burner. In all cases of two-burner calculations, NOx emission is higher than that of a single burner, which results from flow interactions between neighboring burners as well as between a burner and a liner wall. NOx emission is affected significantly by flow and flame interactions between them and strongly depends on burner distance. Burner interaction is divided into two regimes of a burner-burner interaction and a burner-wall interaction depending on the distance. In the former regime, NOx emission is reduced as flame interaction between burners is enhanced and in the latter regime, it is also reduced as interaction between the burner and the liner wall is enhanced.

Author(s):  
Junho Park ◽  
Cheon Hyeon Cho ◽  
Chae Hoon Sohn

Flame interaction between two neighboring burners in a gas turbine combustor is investigated numerically for pursuit of its effect on NOx emission from the burners. In a model chamber or liner, EV burners with double cone are installed. Two burners with the opposite rotating directions (L-R type burner) of air stream are adopted and the distance between them is variable from 74.2 mm to 222.6 mm by the step size of 37.1 mm and an additional distance of 171.3 mm is considered. Gaseous methane and air are adopted as fuel and oxidizer, respectively. From steady-state numerical analyses, flow, temperature, and NO concentration fields are calculated in all computational cases to find their correlation with NO formation. NO emission is evaluated at the exit of the model chamber with two burners as a function of burner distance. Swirl flows induced by EV burner are kept up to the liner exit, but with weaker swirl than that of the same rotating burners (L-L type burners). The case of shortest distance presents strong correlation between two flames while the other cases present weak correlation. In all cases of L-R type burners, NO emission is lower than that of L-L type burners, which results from change in swirl flow patterns. NO emission from L-R type burners with intermediate distances is greater than that from a single burner, but it is smaller than the latter with relatively shorter and longer burner distances.


2021 ◽  
Vol 35 (8) ◽  
pp. 6776-6784
Author(s):  
Truc Huu Nguyen ◽  
Jungkyu Park ◽  
Changhun Sin ◽  
Seungchai Jung ◽  
Shaun Kim

Author(s):  
A. M. Sipatov ◽  
◽  
A. V. Khokhlov ◽  
T. V. Abramchuk ◽  
R. A. Zagitov ◽  
...  

The study of processes occurring in gas turbine combustor is an important part of engine design for achieving the required technical, operational, and environmental characteristics of the engine. During engine design process, both experimental and computational methods are used. The progress in numerical methods of modeling fourdimensional (space and time) physical phenomena and increasing of computation capacity allow application of complex computational fluid dynamics (CFD) methods for simulating such technical devices as the gas turbine combustor.


Author(s):  
Vera Hoferichter ◽  
Denise Ahrens ◽  
Michael Kolb ◽  
Thomas Sattelmayer

Staged combustion is a promising technology for gas turbines to achieve load flexibility and low NOx emission levels at the same time. Therefore, a large scale atmospheric test rig has been set up at the Institute of Thermodynamics, Technical University of Munich to study NOx emission characteristics of a reacting jet in hot cross flow. The premixed primary combustion stage is operated at ϕ = 0.5 and provides the hot cross flow. In the second stage a premixed jet at ϕ = 0.77 is injected perpendicular to the first stage. In both stages natural gas is used as fuel and air as oxidant. This paper presents a reactor model approach for the computation of the resulting NOx concentrations. The mixing and ignition process along the jet streamline of maximum NOx formation is simulated using a perfectly stirred reactor with Cantera 1.8. The reactor model is validated for the ambient pressure case using experimental data. Afterwards, a high pressure simulation is performed in order to investigate the NOx emission characteristics under gas turbine conditions. The NOx formation is divided into flame NOx and post flame NOx. The reactor model reveals that the formation of post flame NOx in the second combustion stage can be efficiently suppressed due to fast mixing with cross flow material and the corresponding temperature reduction. Compared to single stage combustion with the same power output, no NOx reduction was observed in the experiment. However, the results from the reactor model suggest a NOx reduction potential at gas turbine conditions caused by the increased influence of post flame NOx production at high pressure.


Author(s):  
G. Kibrya ◽  
K. K. Botros

A Predictive Emission Monitoring (PEM) model for predicting NOx emission from a gas turbine combustor has been developed by employing an optimized Neural Network (NN) architecture. The Neural Network was trained by using actual field test data and predicted results of a Computational Fluid Dynamics (CFD) model of the combustor. The field tests were performed at a natural gas compressor station driven by a General Electric (GE) LM1600 conventional gas turbine. The model takes eight fundamental parameters (operating and ambient) as input, and predicts NO and NOx as outputs. The data used for training the model covers the entire operating ranges of power and ambient temperature for the site. The CFD model employs a non-equilibrium (flamelet) combustion scheme and a set of 8 reactions including the Zeldovich mechanism for thermal NOx, and an empirical correlation for prompt NOx formation. The results predicted by the CFD model were within 15% of the measured values. Results of the field tests demonstrated that the spool speed ratio of the gas turbine remained constant throughout the tests, the power output of the engine was linearly proportional to the spool speeds, and the NOx emission was proportional to the site power output. A Multi Layer Perceptron type Neural Network with two hidden layers, each with four neurons was found to be the optimum architecture for the model. The NO levels predicted by the PEM model based on the optimized NN had a maximum absolute error of approximately 7%, mean absolute error of 2.3% and standard deviation of 1.97%. One year operating data for the site was submitted to the trained NN model with ambient temperatures varying from −29.9 °C to 35.7 °C and output powers from 5.8 MW to 17 MW. It was found that the model produced consistent contours of NO emissions. As expected, the NO levels were found to increase with increasing power and/or ambient temperature.


Author(s):  
Géza Vermes

Based on a simplified description of the combustion process in the primary zone of a can type gas turbine combustor, a generalized NOx versus fuel flow relationship is proposed. Using this relationship and considerations based on chemical kinetics, the effect of combustor inlet pressure, inlet temperature and air residence time on NOx formation is investigated in industrial and automotive type combustion chambers. Data reported in the literature and original test work is cited to substantiate the validity of the assumptions. Based on the findings, a simple method is presented to predict NOx emissions of a gas turbine combustor under conditions which differ substantially from those of the test run. The assumptions may be used to assemble a model for a priori prediction of NOx emissions in a given combustion geometry.


2013 ◽  
Vol 59 (1-2) ◽  
pp. 454-463 ◽  
Author(s):  
Cheon Hyeon Cho ◽  
Gwang Min Baek ◽  
Chae Hoon Sohn ◽  
Ju Hyeong Cho ◽  
Han Seok Kim

Sign in / Sign up

Export Citation Format

Share Document