Experimental Investigation of Circumferential Groove Casing Treatments for Large Tip Clearances in a Low Speed Axial Research Compressor

Author(s):  
Matthias Rolfes ◽  
Martin Lange ◽  
Konrad Vogeler

In high pressure compressors large tip clearances can occur in the rear stages especially during transient operation. This can lead to a reduced operating range and performance of the compressor. One simple means to reduce the negative effects of a rotor tip clearance increase can be circumferential groove casing treatments. Their ability to improve the operating range of a compressor is well-known for several decades. In this paper, an experimental study to investigate the influence of three different circumferential groove casing treatments on a low speed axial research compressor with very large rotor tip clearances (5% of annulus height) is presented. Two single-groove and one double-groove casing treatments have been tested. The grooves are positioned from 31% to 69% axial chord. The compressor characteristics of the smooth wall and the three groove configurations are discussed as well as selected five-hole probe measurements of the flow field downstream the rotor. It can be shown that all grooves are able to improve the operating range of the compressor. Furthermore, an improvement of efficiency due to the casing grooves can also be observed in certain operating points.

Author(s):  
Matthias Rolfes ◽  
Martin Lange ◽  
Konrad Vogeler ◽  
Ronald Mailach

The demand of increasing pressure ratios for modern high pressure compressors leads to decreasing blade heights in the last stages. As tip clearances cannot be reduced to any amount and minimum values might be necessary for safety reasons, the tip clearance ratios of the last stages can reach values notably higher than current norms. This can be intensified by a compressor running in transient operations where thermal differences can lead to further growing clearances. For decades, the detrimental effects of large clearances on an axial compressor’s operating range and efficiency are known and investigated. The ability of circumferential casing grooves in the rotor casing to improve the compressor’s operating range has also been in the focus of research for many years. Their simplicity and ease of installation are one reason for their continuing popularity nowadays, where advanced methods to increase the operating range of an axial compressor are known. In a previous paper [1], three different circumferential groove casing treatments were investigated in a single stage environment in the Low Speed Axial Research Compressor at TU Dresden. One of these grooves was able to notably improve the operating range and the efficiency of the single stage compressor at very large rotor tip clearances (5% of chord length). In this paper, the results of tests with this particular groove type in a three stage environment in the Low Speed Axial Research Compressor are presented. Two different rotor tip clearance sizes of 1.2% and 5% of tip chord length were investigated. At the small tip clearance, the grooves are almost neutral. Only small reductions in total pressure ratio and efficiency compared to the solid wall can be observed. If the compressor runs with large tip clearances it notably benefits from the casing grooves. Both, total pressure and efficiency can be improved by the grooves in a similar extent as in single stage tests. Five-hole probe measurements and unsteady wall pressure measurements show the influence of the groove on the flow field. With the help of numerical investigations the different behavior of the grooves at the two tip clearance sizes will be discussed.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Matthias Rolfes ◽  
Martin Lange ◽  
Ronald Mailach

Experimental investigations in a single-stage low speed axial research compressor are presented. The influence of four different rotor tip clearances on the overall compressor performance and on the rotor tip flow field is investigated in configurations with and without circumferential groove casing treatments. Piezo-resistive pressure transducers are used to capture the unsteady flow field in the rotor tip region. The investigated casing groove is effectively working at the three largest investigated tip clearance sizes. The largest achieved operating range increase by the groove is 6.9%. The groove can delay the upstream movement of the flow interface between leakage flow and main flow and thus increase the stable operating range. Rotating instabilities are shown to exist at large tip clearance sizes in throttled operating conditions. Their amplitudes can be damped by the casing groove. No modal activities could be detected in the current single-stage compressor build.


Author(s):  
Glen Snedden ◽  
Dwain Dunn ◽  
Grant Ingram ◽  
David Gregory-Smith

As turbine manufacturers strive to develop machines that are more efficient, one area of focus has been the control of secondary flows. To a large extent these methods have been developed through the use of computational fluid dynamics and detailed measurements in linear and annular cascades and proven in full scale engine tests. This study utilises 5-hole probe measurements in a low speed, model turbine in conjunction with computational fluid dynamics to gain a more detailed understanding of the influence of a generic endwall design on the structure of secondary flows within the rotor. This work is aimed at understanding the influence of such endwalls on the structure of secondary flows in the presence of inlet skew, unsteadiness and rotational forces. Results indicate a 0.4% improvement in rotor efficiency as a result of the application of the generic non-axisymmetric endwall contouring. CFD results indicate a clear weakening of the cross passage pressure gradient, but there are also indications that custom endwalls could further improve the gains. Evidence of the influence of endwall contouring on tip clearance flows is also presented.


Author(s):  
M Künzelmann ◽  
R Urban ◽  
R Mailach ◽  
K Vogeler

The stable operating range of axial compressors is limited by the onset of rotating stall and surge. Mass injection upstream of the tip of an axial compressor rotor is a stability enhancement approach which can be effective in suppressing stall in tip-critical rotors, and thus increasing the operating range of compressors. In this article, investigations on active flow control related to the rotor tip gap sensitivity are discussed. The experiments were performed in a 1.5-stage low-speed research compressor. Measurements at part speed (80 per cent) and full speed (100 per cent) with varying injection rates are discussed. These tests were performed for two rotor tip clearances of 1.3 per cent and 4.3 per cent of rotor blade tip chord. Results on the compressor map, the flow field as well as transient measurements to identify the stall inception are discussed. Supplementary, the numerical results are compared to the experiments based on the configuration with the greatest benefit in operating range enhancement.


Author(s):  
F. Heinichen ◽  
V. Gu¨mmer ◽  
H.-P. Schiffer

In axial compressors, casing treatments represent a passive method to increase the working range without the need to modify the blade geometry. The majority of the open literature on the topic considers one or several casing treatment variants on the same compressor. The question how one casing treatment and its basic mechanisms can be transferred to a different compressor is only covered in a small number of publications. This paper tries to fill this gap by applying a single circumferential groove type casing treatment to three different transonic compressor rotors. It is demonstrated numerically that the casing treatment is able to improve the aerodynamic performance of all three rotors. Detailed investigation of the flow field near the rotor tip shows that the single circumferential groove works by influencing the interaction between the tip clearance vortex and the shock. Hence, this type of casing treatment can be generalized to transonic rotors with a stall mechanism that is based on tip clearance vortex-shock interaction.


Author(s):  
Martin Heinrich ◽  
Hossein Khaleghi ◽  
Christian Friebe

Abstract This study is aimed at understanding the effects of circumferential groove casing treatment on the performance of a low speed contra-rotating fan. Three dimensional, transient simulations are carried out using the open source CFD library Open-FOAM. The numerical results are validated with experiments for the smooth casing, which show a good agreement. Three treated casing configurations are investigated: 1) grooves at the top of the first rotor, 2) grooves at the top of the second rotor, and 3) grooves at the top of both rotors. Two operating points are simulated for all configurations. Flow inside the grooves is highly dominated by the main and blade passage flows. Grooves increase fan performance at near-stall flow conditions by up to 3 % and reduce pressure fluctuations significantly. Furthermore, they have a larger impact on fan performance when placed on top of the first rotor compared to placing them on top of the second rotor.


Author(s):  
P. V. Ramakrishna ◽  
M. Govardhan

There are a number of performance indices for a turbomachine on the basis of which its strength is evaluated. In the case of axial compressors, pressure ratio, efficiency and stall margin are few such indices which are of major concern in the design phase as well as in the evaluation of performance of the machine. In the process of improving the blade design, 3D blade stacking, where the aerofoil sections constituting the blade are moved in relation to the flow. Tilting the blade sections to the flow direction (blade sweep) would increase the operating range of an axial compressor due to modifications in the pressure and velocity fields on the suction surface. On the other hand, blade tip gap, though finite, has great influence on the performance of a turbomachine. The present work investigates the combined effect of these two factors on various flow characteristics in a low speed axial flow compressor. The objective of the present paper is thereby confined to study the collective effects of sweep and tip clearance without attempting to suggest an outright new design. In the present numerical work, the performance of Tip Chordline Sweeping (TCS) and Axial Sweeping (AXS) of low speed axial compressor rotor blades are studied. For this, 15 computational domains were modeled for five rotor sweep configurations and three different clearance levels for each rotor. Through the results, 20°AXS rotor is found to be distinctive among all the rotors with highest pressure rise, higher operating range and less tip clearance loss characteristics. TCS rotors produced improved total pressure rise at the low flow coefficients when the tip gap is increased. Hence there is a chance that an “optimum” tip gap exists for the TCS rotors in terms of total pressure coefficient and operating range, while AXS rotors are at their best with the minimum possible clearance.


2017 ◽  
Vol 139 (12) ◽  
Author(s):  
Matthias Rolfes ◽  
Martin Lange ◽  
Konrad Vogeler ◽  
Ronald Mailach

The demand of increasing pressure ratios for modern high pressure compressors leads to decreasing blade heights in the last stages. As tip clearances (TC) cannot be reduced to any amount and minimum values might be necessary for safety reasons, the TC ratios of the last stages can reach values notably higher than current norms. This can be intensified by a compressor running in transient operations where thermal differences can lead to further growing clearances. For decades, the detrimental effects of large clearances on an axial compressor's operating range and efficiency are known and investigated. The ability of circumferential casing grooves in the rotor casing to improve the compressor's operating range has also been in the focus of research for many years. Their simplicity and ease of installation are one reason for their continuing popularity nowadays, where advanced methods to increase the operating range of an axial compressor are known. In the authors' previous paper, three different circumferential groove casing treatments were investigated in a single-stage environment in the low-speed axial research compressor at TU Dresden. One of these grooves was able to notably improve the operating range and the efficiency of the single stage compressor at very large rotor TC (5% of chord length). In this paper, the results of tests with this particular groove type in a three stage environment in the low-speed axial research compressor are presented. Two different rotor TC sizes of 1.2% and 5% of tip chord length were investigated. At the small TC, the grooves are almost neutral. Only small reductions in total pressure ratio and efficiency compared to the solid wall can be observed. If the compressor runs with large TC, it notably benefits from the casing grooves. Both, total pressure and efficiency can be improved by the grooves in a similar extent as in single stage tests. Five-hole probe measurements and unsteady wall pressure measurements show the influence of the groove on the flow field. With the help of numerical investigations, the different behavior of the grooves at the two TC sizes will be discussed.


Author(s):  
Hideaki Tamaki ◽  
Masaru Unno ◽  
Ryuuta Tanaka ◽  
Satoshi Yamaguchi ◽  
Yohei Ishizu

The operating points of a turbocharger compressor tend to approach or cross its surge line while an engine is accelerating, particularly under low-engine speed conditions, hence the need for an acceptable surge margin under low compressor-speed conditions. A method shifting the stability limit on a compressor low-speed line toward a lower flow rate is expected and inlet recirculation is often observed in a centrifugal compressor with a vaneless diffuser near a surge and under a low compressor-speed condition. First, examples of inlet recirculation were introduced in this paper, whereupon the effect of inlet recirculation on compressor characteristic was discussed by 1-D consideration and the potential shown for growth of inlet recirculation to destabilize compressor operations. Accordingly, this study focused on suppressing the effect of inlet recirculation on compressor characteristics using small fins mounted in a compressor-inlet pipe, and examining whether they enhance the compressor operating range under low-speed conditions. Small fins are known as inlet fins in this paper. According to test results, they showed great promise in enhancing the compressor operating range during inlet recirculation. Besides, attempts were also made to investigate the qualitative effect of inlet fins on flow fields using CFD and the disadvantages of inlet fins were also discussed.


Author(s):  
J. Anton Streit ◽  
Frank Heinichen ◽  
Hans-Peter Kau

A state-of-the-art transonic compressor rotor has a distinct potential for increased efficiency if modified for improved interaction with an axial-slot type casing treatment. Reducing the number of blades and thus the surface lowers friction losses but increases tip clearance effects and deteriorates the stall margin due to the higher aerodynamic blade loading. The latter two negative effects can be compensated for by the casing treatment, thus restoring the required stall margin and gaining an overall reduction of losses. For the specific compressor rotor under investigation, the potential in polytropic efficiency is as high as 0.7%. The present study was performed using time-accurate CFD (URANS) simulations. Both the reference rotor as well as the modified design are analyzed regarding their interaction with the casing treatment. The traceability of the conclusions is assured by interpreting the detailed flow phenomena. The newly designed rotor is found to be favorably influenced by the casing treatment at design operating conditions whilst the reference only benefits at throttled operating points. Casing treatments are commonly used to broaden the operating range of existing compressors without changing the design of the compressor rotor itself. This study aims to show the possible transformation of this potential in the stall margin into efficiency at design operating conditions by implementing an appropriate rotor design.


Sign in / Sign up

Export Citation Format

Share Document