Computational and Experimental Study of Heat Transfer in Rotating Ribbed Radial Turbine Cooling Passages

Author(s):  
Robert Pearce ◽  
Peter Ireland ◽  
Li He ◽  
Matthew McGilvray ◽  
Eduardo Romero

This study investigates the effect of rotation on the Nusselt number distribution within ribbed radial turbine cooling passages representative of systems used in current jet engines. The results are unusual in that the cooling passage length to diameter ratio is engine representative and full distributions of local Nusselt number have been measured using the transient liquid crystal method. The results are compared to RANS CFD simulations and the level of agreement discussed in detail. A triple-pass serpentine passage is investigated, which includes 45° filleted rib-turbulators and 180° curved bends. The first two passes have an aspect ratio of 1:4 which are radially inward and outward respectively, with the final pass being radially outward with an aspect ratio of 1:2. The Reynolds, Rotation and Buoyancy numbers are all representative of a passage within a HP turbine blade of a gas turbine engine at 97000/108000, 0.081/0.088 and 0.052/0.035 respectively for the 1:4/1:2 aspect ratio passages. CFD simulations are found to give good predictions under stationary conditions however significant differences are observed when rotation is introduced. The Nusselt number distributions depend strongly on both rotation and upstream flow conditions created by the specific geometry.

Author(s):  
Robert Pearce ◽  
Peter Ireland ◽  
Matthew McGilvray ◽  
Eduardo Romero

This study investigates the effect of inlet velocity profiles and rib orientations on the Nusselt number distribution within ribbed radial turbine cooling passages representative of systems used in current engines. A triple-pass serpentine passage is investigated, which includes rib turbulators angled at 45° and 180° bends. The first two passes are radially outward and inward respectively and both have an aspect ratio of 1:4, with the third pass radially outward with an aspect ratio of 1:2. Multiple inlet velocity profiles are studied in RANS CFD simulations under both stationary and rotating conditions. The rotating simulations have Reynolds, Rotation and Buoyancy numbers representative of a passage within a HP turbine blade of a gas turbine engine. The flow structure and Nusselt number distributions are discussed in detail with the inlet velocity profile found to have a very large influence in the first pass under both stationary and rotating conditions, with smaller differences observed in the later passes. The rib orientation in the second pass was also investigated, with simulations of reversed and non-reversed rib orientation compared. Improved heat transfer characteristics were found in simulations where the ribs were orientated in the same direction for all three passages. These simulations are compared to experimental results in order to explain previous discrepancies found between experimental and CFD data from an experimental setup with complex inlet geometry.


2009 ◽  
Vol 132 (2) ◽  
Author(s):  
Andrew C. Chambers ◽  
David R. H. Gillespie ◽  
Peter T. Ireland ◽  
Robert Kingston

Impingement systems are common place in many turbine cooling applications. Generally these systems consist of a target plate that is cooled by the impingement of multiple orthogonal jets. While it is possible to achieve high target surface heat transfer with this configuration, the associated pressure drop is generally high and the cooling efficiency low. Furthermore, especially in large impingement arrays, the buildup of cross flow from upstream jets can be significant and results in deflection of downstream impingement jets reducing the resultant heat transfer coefficient distribution. This paper presents a computational and experimental investigation into the use of shaped elliptical or elongated circular impingement holes designed to improve the penetration of the impinging jet across the coolant passage. This is of particular interest where there is significant cross flow. Literature review and computational investigations are used to determine the optimum aspect ratio of the impingement jet. The improved heat transfer performance of the modified design is then tested in an experimental rig with varying degrees of cross flow at engine representative conditions. In all cases, a 16% increase in the Nusselt number on the impingement target surface in the downstream half of the cooling passage was achieved. Under the first four impingement holes, a Nusselt number enhancement of 28–77% was achieved, provided no additional cross flow was present in the passage. When appropriately aligned, a significant reduction in the stress concentration factor caused by the addition of a hole can be achieved using this design.


Author(s):  
Behnam Nouri ◽  
Knut Lehmann ◽  
Arnold Kühhorn

In the drive for higher cycle efficiencies in gas turbine engines, turbine blades are seeing an increasingly high heat load. This in turn demands improvements in the internal cooling system and a better understanding of both the level and distribution of the internal heat-transfer. A typical approach to enhance the internal cooling of the turbine blade is by casting angled ‘low blockage’ ribs on the walls of the cooling channels. The objective of the present paper is to determine the detailed Nusselt number distribution in rectangular internal channels with ribs. This knowledge can be used to guide the overall design e.g. to achieve high levels of heat-transfer where required. The effects of rotation as well as the interaction effects of the position and direction of ribs on opposite walls of the cooling channel have been investigated. Numerical calculations have been carried out using the commercial CFD code Fluent to investigate the local Nusselt number enhancement factor in rectangular ducts of different aspect ratios (0.5, 1 and 2) which have 45° or 90° angled ribs located on two opposite walls. This has been studied for different Rotation number Ro (0–0.45) and with a Reynolds number >30000. The first series of studies has been carried out with the same experimental setup as by Han [1]. The geometry was slightly changed to avoid the effect of high heat transfer at the entry. This study identifies important vortical structures, which are dependent on the direction and the position of the ribs. This has a profound effect on the distribution of heat-transfer within the passage. It is shown that the two smooth walls of the duct have different average Nusselt number ratio Nu/NuFD enhancement depending on the rib angle. In addition, based on numerical investigations, simple correlations have been developed for the rotational influence of the internal Nusselt number distribution. A major finding is that the effect of rotation is dominant for low aspect ratio channels and the local enhancement due to the rib position and angle is more dominant for high aspect ratio channels.


Author(s):  
M. K. Chyu ◽  
Y. Yu ◽  
H. Ding ◽  
J. P. Downs ◽  
F. O. Soechting

The present study evaluates an innovative approach for enhancement of surface heat transfer in a channel using concavities, rather than protruding elements. Serving as a vortex generator, a concavity is expected to promote turbulent mixing in the flow bulk and enhance the heat transfer. Using a transient liquid crystal imaging system, local heat transfer distribution on the surface roughened by an staggered array based on two different shapes of concavities, i.e. hemispheric and tear-drop shaped, have been obtained, analyzed and compared. The results reveal that both concavity configurations induce a heat transfer enhancement similar to that of continuous rib turbulators, about 2.5 times their smooth counterparts 10,000 ≤ Re ≤ 50,000. In addition, both concavity arrays reveal remarkably low pressure losses that are nearly one-half the magnitudes incurred with protruding elements. In turbine cooling applications, the concavity approach is particularly attractive in reducing system weight and ease of manufacturing.


Author(s):  
Andrew C. Chambers ◽  
David R. H. Gillespie ◽  
Peter T. Ireland ◽  
Mark Mitchell

Impingement systems are common place in many turbine cooling applications. Generally these systems consist of a target plate that is cooled by the impingement of multiple orthogonal jets. While it is possible to achieve high target surface heat transfer with this configuration, the associated pressure drop is generally high and the cooling efficiency low. Furthermore, especially in large impingement arrays, the build-up of cross flow from upstream jets can be significant and result in deflection of downstream impingement jets reducing the resultant heat transfer coefficient distribution. This paper presents a computational and experimental investigation into the use of shaped elliptical or elongated circular impingement holes designed to improve the penetration of the impinging jet across the coolant passage. This is of particular interest where there is significant cross flow. Literature review and computational investigations are used to determine the optimum aspect ratio of the impingement jet. The improved heat transfer performance of the modified design is then tested in an experimental rig with varying degrees of cross flow at engine representative conditions. In all cases a 16% increase in the Nusselt number on the impingement target surface in the downstream half of the cooling passage was achieved. Under the first 4 impingement holes Nusselt number enhancement of enhancement of 28–77% was achieved provided no additional cross flow was present in the passage. When appropriately aligned, a significant reduction in the stress concentration factor caused by the addition of a hole can be achieved using this design.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 674
Author(s):  
Paul Caicedo ◽  
David Wood ◽  
Craig Johansen

Solar chimney power plants (SCPPs) collect air heated over a large area on the ground and exhaust it through a turbine or turbines located near the base of a tall chimney to produce renewable electricity. SCPP design in practice is likely to be specific to the site and of variable size, both of which require a purpose-built turbine. If SCPP turbines cannot be mass produced, unlike wind turbines, for example, they should be as cheap as possible to manufacture as their design changes. It is argued that a radial inflow turbine with blades made from metal sheets, or similar material, is likely to achieve this objective. This turbine type has not previously been considered for SCPPs. This article presents the design of a radial turbine to be placed hypothetically at the bottom of the Manzanares SCPP, the only large prototype to be built. Three-dimensional computational fluid dynamics (CFD) simulations were used to assess the turbine’s performance when installed in the SCPP. Multiple reference frames with the renormalization group k-ε turbulence model, and a discrete ordinates non-gray radiation model were used in the CFD simulations. Three radial turbines were designed and simulated. The largest power output was 77.7 kW at a shaft speed of 15 rpm for a solar radiation of 850 W/m2 which exceeds by more than 40 kW the original axial turbine used in Manzanares. Further, the efficiency of this turbine matches the highest efficiency of competing turbine designs in the literature.


Author(s):  
Salaika Parvin ◽  
Nepal Chandra Roy ◽  
Litan Kumar Saha ◽  
Sadia Siddiqa

A numerical study is performed to investigate nanofluids' flow field and heat transfer characteristics between the domain bounded by a square and a wavy cylinder. The left and right walls of the cavity are at constant low temperature while its other adjacent walls are insulated. The convective phenomena take place due to the higher temperature of the inner corrugated surface. Super elliptic functions are used to transform the governing equations of the classical rectangular enclosure into a system of equations valid for concentric cylinders. The resulting equations are solved iteratively with the implicit finite difference method. Parametric results are presented in terms of streamlines, isotherms, local and average Nusselt numbers for a wide range of scaled parameters such as nanoparticles concentration, Rayleigh number, and aspect ratio. Several correlations have been deduced at the inner and outer surface of the cylinders for the average Nusselt number, which gives a good agreement when compared against the numerical results. The strength of the streamlines increases significantly due to an increase in the aspect ratio of the inner cylinder and the Rayleigh number. As the concentration of nanoparticles increases, the average Nusselt number at the internal and external cylinders becomes stronger. In addition, the average Nusselt number for the entire Rayleigh number range gets enhanced when plotted against the volume fraction of the nanofluid.


2011 ◽  
Vol 71-78 ◽  
pp. 1187-1190
Author(s):  
Yan Lai Zhang ◽  
Zhong Hao Rao ◽  
Shuang Feng Wang ◽  
Hong Zhang ◽  
Li Jun Li ◽  
...  

This experiment is performed to investigate heat transfer characteristics with the PCM microcapsule slurry in a solid phase state at a horizontal rectangular enclosure heating from below and cooling from top. Some important parameters are taken into account such as the mass concentration of the PCM, the temperature difference between heating plate and cooling plate, Nusselt number Nu, Rayleigh number Ra and the aspect ratio (width/height) of the horizontal rectangular enclosure. Experiment is done under the thermal steady condition in the PCM microcapsule slurry. Heat transfer coefficient is measured under various temperature differences in PCM mass concentrations of 10% and 20%. And relationship with Nusselt number Nu and Rayleigh number Ra is summarized to various heights H or the aspect ratio (width/height) Ar of enclosure.


Author(s):  
Arman Sadeghi ◽  
Abolhassan Asgarshamsi ◽  
Mohammad Hassan Saidi

Fluid flow and heat transfer at microscale have attracted an important research interest in recent years due to the rapid development of microelectromechanical systems (MEMS). Fluid flow in microdevices has some characteristics which one of them is rarefaction effect related with gas flow. In this research, hydrodynamically and thermally fully developed laminar rarefied gas flow in annular microducts is studied using slip flow boundary conditions. Two different cases of the thermal boundary conditions are considered, namely: uniform temperature at the outer wall and adiabatic inner wall (Case A) and uniform temperature at the inner wall and adiabatic outer wall (Case B). Using the previously obtained velocity distribution, energy conservation equation subjected to relevant boundary conditions is numerically solved using fourth order Runge-Kutta method. The Nusselt number values are presented in graphical form as well as tabular form. It is realized that for the case A increasing aspect ratio results in increasing the Nusselt number, while the opposite is true for the case B. The effect of aspect ratio on Nusselt number is more notable at smaller values of Knudsen number, while its effect becomes slighter at large Knudsen numbers. Also increasing Knudsen number leads to smaller values of Nusselt number for the both cases.


Author(s):  
Liu Wenhua ◽  
Mo Yang ◽  
Li Ling ◽  
Qiao Liang ◽  
Yuwen Zhang

Turbulent flow and heat transfer in rectangular channel has an important significance in engineering. Conventional approach to caculate Nusselt number of rectangular channel approximately is to take the equivalent diameter as the characteristic length and use the classic circular channel turbulent heat transfer coefficient correlations. However, under these conditions, the caculation error of Nusselt number can reach to 14% and thus this approach can not substantially describe the variation of Nusselt number of rectangular cross-sections with different aspect ratios. Therefore, caculation by using equivalent diameter as the characteristic length in classic experiment formula needs to be corrected. Seven groups of rectangular channel models with different aspect ratios have been studied numerically in this paper. By using standard turbulence model, the flow and heat transfer law of air with varing properties has been studied in 4 different sets of conditions in Reynolds number. The simulation and experimental results are in good agreement. The simulation results show that with the increase of aspect ratio, the cross-sectional average Nusselt number increased, Nusselt number of circumferential wall distributed more evenly and the difference between the infinite plate channel and square channel went up to 25%. The effects of corner region and long\short sides on heat transfer have also been investigated in this paper. Results show that in rectangular channel, heat transfer in corner region is significantly weaker than it in other region. With the increase of aspect ratio, effect on the long side of heat transfer of the short side is gradually reduced, and then eventually eliminates completely in the infinite flat place. Based on the studies above, correction coefficient for rectangular channels with different aspect ratios has been proposed in this paper and the accuracy of the correction coefficient has been varified by numerical simulations. This can reflect the variation of Nusselt number under different aspect ratios more effectively and thus has current significance for project to calculate Nusselt number of heat transfer in rectangular channel.


Sign in / Sign up

Export Citation Format

Share Document