Numerical Validation of Empirical Formula for Estimating Airfoil Drag Coefficient at Extreme Angles of Attack in Wind Turbine Applications

Author(s):  
Jaikumar Loganathan ◽  
Srinath Narayanamurthy

For optimal structural design of wind turbine blades, aerodynamic loads need to be estimated at all wind and operating conditions. Under parked conditions or during an emergency stop or in the event of a sudden gust, the blades can experience very high angles of attack (AOA). Generally, loads at these high AOA are design driving and hence an accurate estimation of force coefficients at these conditions are critical for efficient design. Experimental investigation of airfoils at high AOA in a wind tunnel is always a challenge due to blockage effects, Reynolds number limitation and large unsteady wake motion. Numerical simulations have their own deficiencies mainly associated with the limitations of turbulence models. Empirical formulas which are derived from experimental data for a variety of airfoils have been used with some degree of success. One such empirical formula proposed by C. Lindenburg is based on a limited set of airfoil geometry parameters like leading edge radius and wedge angles. In this study a CFD based numerical investigation is carried out on simplified airfoil geometries to validate the assumptions made in Linderburg’s formula.

2012 ◽  
Vol 19 ◽  
pp. 283-292 ◽  
Author(s):  
RI-KUI ZHANG ◽  
JIE-ZHI WU ◽  
SHI-YI CHEN

A new active control strategy for wind-turbine blades under off-design conditions has been investigated in this paper. According to our previous work, in comparison with the traditional straight leading-edge blade, a new kind of bionic blades with a sinusoidal leading edge can significantly enhance the turbine's power output at high speed inflows. However, the wavy leading-edge shape is unfavorable under the design operating conditions since an early boundary-layer separation is inevitable for a wind-turbine blade because of the geometric disturbances of the leading-edge tubercles. But for the present active control, the deflect in wavy leading-edge blades can be eliminated by introducing a series of small flat delta wings as the control units, since delta wings can also generate powerful leading-edge vortices. As a preliminary test, our numerical results show that, the shaft-torque fluctuation in the turbine's stall region can be improved from 27.8% for a straight leading-edge blade (no control) to 8.9% for the present active control; and by adjusting the control parameters, the control units nearly have not any negative effect on the blade's shaft torque under the design conditions. We believe that, as an auxiliary tool of the conventional control strategies, the present active control approach may be favorable to generate a more stable and more controllable power output for wind turbines under all operating conditions (even in the yawed inflows).


Author(s):  
Matthew Lennie ◽  
Georgios Pechlivanoglou ◽  
David Marten ◽  
Christian Navid Nayeri ◽  
Oliver Paschereit

To certify a Wind Turbine the standard processes set out by the GL guidelines and the IEC61400 demand a large number of simulations in order to justify the safe operation of the machine in all reasonably probable scenarios. The result of this rather demanding process is that the simulations rely on lower fidelity methods such as the Blade Element Momentum (BEM) method. The BEM method relies on a number of simplified inputs including the coefficient of lift and drag polar data (usually referred to as polars). These polars are usually either measured experimentally, generated using tools such as XFoil or, in some cases obtained using 2D CFD. It is typical to then modify these polars in order to make them suitable for aeroelastic simulations. Some of these modifications include 360° angle of attack extrapolation methods and polar modifications to account for 3D effects. Many of these modifications can be perceived to be a black art due to the manual selection of coefficients. The polars can misrepresent reality for many reasons, for example, inflow turbulence can affect measurements obtained in wind tunnels. Furthermore, on real wind turbine blades leading edge erosion can reduce performance. Simulated polars can even vary significantly due to the choice of turbulence models. Stack these effects on top of the uncertainties caused by yaw error, pitch error and dynamic stall and one can clearly see an operating environment hostile to accurate simulations. Colloquial evidence suggests that experienced designers would account for all of these sources of errors methodically, however, this is not reflected by the certification process. A review of experimental data and literature was performed to identify some of the inaccuracies in wind turbine polars. Significant variations were found between a range of 2D polar techniques and wind tunnel measurements. A sensitivity study was conducted using the aeroelastic simulation code FAST (National Renewable Energy Laboratory) with lift and drag polars sourced using different methods. The results were post-processed to give comparisons the rotor blade fatigue damage; variations in accumulated damages reached levels of 164%. This variation is not disastrous but is certainly enough to motivate a new approach for certifying the aerodynamic performance of wind turbines. Such an approach would simply see the source of polar data and all post-processing steps documented and included in the checks performed by certification bodies.


2021 ◽  
Vol 169 ◽  
pp. 953-969
Author(s):  
Leon Mishnaevsky ◽  
Charlotte Bay Hasager ◽  
Christian Bak ◽  
Anna-Maria Tilg ◽  
Jakob I. Bech ◽  
...  

2021 ◽  
pp. 0309524X2110071
Author(s):  
Usman Butt ◽  
Shafqat Hussain ◽  
Stephan Schacht ◽  
Uwe Ritschel

Experimental investigations of wind turbine blades having NACA airfoils 0021 and 4412 with and without tubercles on the leading edge have been performed in a wind tunnel. It was found that the lift coefficient of the airfoil 0021 with tubercles was higher at Re = 1.2×105 and 1.69×105 in post critical region (at higher angle of attach) than airfoils without tubercles but this difference relatively diminished at higher Reynolds numbers and beyond indicating that there is no effect on the lift coefficients of airfoils with tubercles at higher Reynolds numbers whereas drag coefficient remains unchanged. It is noted that at Re = 1.69×105, the lift coefficient of airfoil without tubercles drops from 0.96 to 0.42 as the angle of attack increases from 15° to 20° which is about 56% and the corresponding values of lift coefficient for airfoil with tubercles are 0.86 and 0.7 at respective angles with18% drop.


2018 ◽  
Vol 72 ◽  
pp. 01007 ◽  
Author(s):  
Faizan Afzal ◽  
Muhammad S. Virk

This paper describes a brief overview of main issues related to atmospheric ice accretion on wind turbines installed in cold climate region. Icing has significant effects on wind turbine performance particularly from aerodynamic and structural integrity perspective, as ice accumulates mainly on the leading edge of the blades that change its aerodynamic profile shape and effects its structural dynamics due to added mass effects of ice. This research aims to provide an overview and develop further understanding of the effects of atmospheric ice accretion on wind turbine blades. One of the operational challenges of the wind turbine blade operation in icing condition is also to overcome the process of ice shedding, which may happen due to vibrations or bending of the blades. Ice shedding is dangerous phenomenon, hazardous for equipment and personnel in the immediate area.


2020 ◽  
Vol 5 (3) ◽  
pp. 977-981 ◽  
Author(s):  
Anna-Maria Tilg ◽  
Charlotte Bay Hasager ◽  
Hans-Jürgen Kirtzel ◽  
Poul Hummelshøj

Abstract. Leading-edge erosion (LEE) of wind turbine blades is caused by the impact of hydrometeors, which appear in a solid or liquid phase. A reduction in the wind turbine blades' tip speed during defined precipitation events can mitigate LEE. To apply such an erosion-safe mode, a precipitation nowcast is required. Theoretical considerations indicate that the time a raindrop needs to fall to the ground is sufficient to reduce the tip speed. Furthermore, it is described that a compact, vertically pointing radar that measures rain at different heights with a sufficiently high spatio-temporal resolution can nowcast rain for an erosion-safe mode.


Author(s):  
Yan Wang ◽  
Liang Wang ◽  
Chenglin Duan ◽  
Jian Zheng ◽  
Zhe Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document