Difference in the Working Principle of Axial Slot and Tip Blowing Casing Treatments

Author(s):  
André Inzenhofer ◽  
Cyril Guinet ◽  
Andreas Hupfer ◽  
Bernd Becker ◽  
Patrick Grothe ◽  
...  

Tip blowing and axial slot casing treatments have shown their ability to enhance the stability of a transonic axial compressor with different effects on efficiency. For an effective application of these casing treatments, a good knowledge of the influence of the casing treatment on the rotor flow field is important. There is still a need for more detailed investigations, in order to understand the interaction between the treatment and the near casing 3D flow field. For transonic compressor rotors this interaction is more complex, as super- and subsonic flow regions alternate while interacting with the casing treatment. In the present study, an axial slot and a tip blowing casing treatment, which have been developed and optimized for the same tip critical transonic axial compressor rotor (reference rotor) by Streit et al. [1] and Guinet et al. [2], are subject of the investigation. Both casing treatment types showed their capabilities to enhance the compressor stability without losing by means of CFD simulations. Since the higher compressor stability allows a higher blade loading, Streit et al. reduced the blade number of the rotor. Thus, the efficiency was increased due to the reduction of friction losses. However, applying the tip blowing casing treatment to the reduced rotor shows a negative effect on the efficiency. Both casing treatment types recirculate flow from a downstream to an upstream location of the rotor and reinject it to enhance the near casing flow field. Although the working principle of the two casing treatment types are similar, the transfer of the casing treatments from the reference to the reduced rotor show different trends in efficiency. Therefore, the effect of recirculation cannot explain the difference in efficiency. Hence, applying axial slots must include additional flow features, compared to recirculation channels. Compensating effects as in circumferential groove casing treatments and other flow interactions between the near casing flow field and the slot flow are considered. These additional mechanisms of the axial slot casing treatment will be identified and isolated by comparing the two different casing treatment types. The numerical simulations are carried out on a 1.5 stage transonic axial compressor using URANS simulations.

2016 ◽  
Vol 139 (2) ◽  
Author(s):  
Cyril Guinet ◽  
André Inzenhofer ◽  
Volker Gümmer

The design space of axial-flow compressors is restricted by stability issues. Different axial-type casing treatments (CTs) have shown their ability to enhance compressor stability and to influence efficiency. Casing treatments have proven to be effective, but there still is need for more detailed investigations and gain of understanding for the underlying flow mechanism. Casing treatments are known to have a multitude of effects on the near-casing 3D flow field. For transonic compressor rotors, these are more complex, as super- and subsonic flow regions alternate while interacting with the casing treatment. To derive design rules, it is important to quantify the influence of the casing treatment on the different tip flow phenomena. Designing a casing treatment in a way that it antagonizes only the deteriorating secondary flow effects can be seen as a method to enhance stability while increasing efficiency. The numerical studies are carried out on a tip-critical rotor of a 1.5-stage transonic axial compressor. The examined recirculating tip blowing casing treatment (TBCT) consists of a recirculating channel with an air off-take above the rotor and an injection nozzle in front of the rotor. The design and functioning of the casing treatment are influenced by various parameters. A variation of the geometry of the tip blowing, more specifically the nozzle aspect ratio, the axial position, or the tangential orientation of the injection port, was carried out to identify key levers. The tip blowing casing treatment is defined as a parameterized geometric model and is automatically meshed. A sensitivity analysis of the respective design parameters of the tip blowing is carried out on a single rotor row. Their impact on overall efficiency and their ability to improve stall margin are evaluated. The study is carried out using unsteady Reynolds-averaged Navier–Stokes (URANS) simulations.


Author(s):  
Kirubakaran Purushothaman ◽  
Sankar Kumar Jeyaraman ◽  
Ajay Pratap ◽  
Kishore Prasad Deshkulkarni

This study discusses in detail the aeroelastic flutter investigation of a transonic axial compressor rotor using computational methods. Fluid structure interaction approach is used in this method to evaluate the unsteady aerodynamic force and work done of a vibrating blade in CFD domain. Energy method and work per cycle approach is adapted for this flutter prediction. A framework has been developed to estimate the work per cycle and aerodynamic damping ratio. Based on the aerodynamic damping ratio, occurrence of flutter is estimated for different inter blade phase angles. Initially, the baseline rotor blade design was having negative aerodynamic damping at part speed conditions. The main cause for this flutter occurrence was identified as large flow separation near blade tip region due to high incidence angles. The unsteadiness in the flow was leading to aerodynamic force fluctuation matching with natural frequency of blade, resulting in excitation of the blades. Hence axially skewed slot casing treatment was implemented to reduce the flow separation at blade tip region to alleviate the onset of flutter. By this method, the stall margin and aerodynamic damping of the test compressor was improved and flutter was avoided.


Author(s):  
Garth V. Hobson ◽  
Anthony J. Gannon ◽  
Scott Drayton

A new design procedure was developed that uses commercial-off-the-shelf software (MATLAB, SolidWorks, and ANSYS-CFX) for the geometric rendering and analysis of a transonic axial compressor rotor with splitter blades. Predictive numerical simulations were conducted and experimental data were collected in a Transonic Compressor Rig. This study advanced the understanding of splitter blade geometry, placement, and performance benefits. In particular, it was determined that moving the splitter blade forward in the passage between the main blades, which was a departure from the trends demonstrated in the few available previous transonic axial compressor splitter blade studies, increased the mass flow range with no loss in overall performance. With a large 0.91 mm (0.036 in) tip clearance, to preserve the integrity of the rotor, the experimentally measured peak total-to-total pressure ratio was 1.69 and the peak total-to-total isentropic efficiency was 72 percent at 100 percent design speed. Additionally, a higher than predicted 7.5 percent mass flow rate range was experimentally measured, which would make for easier engine control if this concept were to be included in an actual gas turbine engine.


2010 ◽  
Vol 133 (1) ◽  
Author(s):  
R. Schnell ◽  
M. Voges ◽  
R. Mönig ◽  
M. W. Müller ◽  
C. Zscherp

A single stage transonic axial compressor was equipped with a casing treatment consisting of 3.5 axial slots per rotor pitch in order to investigate its influence on stall margin characteristics, as well as on the rotor near tip flow field, both numerically and experimentally. Contrary to most other studies, a generic casing treatment (CT) was designed to provide optimal optical access in the immediate vicinity of the CT, rather than for maximum benefit in terms of stall margin extension. The second part of this two-part paper deals with the numerical developments and their validation, carried out in order to efficiently perform time-accurate casing treatment simulations. The numerical developments focus on the extension of an existing coupling algorithm in order to carry out unsteady calculations with any exterior geometry coupled to the main flow passage (in this case a single slot), having an arbitrary pitch. This extension is done by incorporating frequency domain, phase-lagged boundary conditions into this coupling procedure. Whereas the phase lag approach itself is well established and validated for standard rotor-stator calculations, its application to casing treatment simulations is new. Its capabilities and validation will be demonstrated on the given compressor configuration, making extensive use of the detailed particle image velocimetry flow field measurements near the rotor tip. Instantaneous data at all measurement planes will be compared for different rotor positions with respect to the stationary slots in order to evaluate the time-dependent interaction between the rotor and the casing treatment.


1991 ◽  
Author(s):  
Jacques Paulon ◽  
Zhifang Zhang ◽  
Pingfang Jia ◽  
Jingfei Meng

Interaction phenomena between rotor and stator are unavoidable in advanced compressors and their effects increase with the performances of the turbomachines. Until now, it was not possible to quantify the interaction effects, but with the development of 3-D unsteady computation codes in a complete stage, it is possible to know, in detail, the flow field through the machine and to make evident and to explain the difficulties encountered in measuring the flow parameters. A study has been conducted in this way at ONERA, on an axial transonic compressor stage. The computations have been made with a simulation of the losses; in this manner, the overall computed and measured performances of the compressor are the same. A detailed analysis of the unsteady computation results makes evident, between rotor and stator, large variations of some parameters of the flow as a function of time but also as a function of the axial and tangential relative position of steady probes and stator blades. Unsteady measurements made on another transonic machine confirm the indications given by these computations.


Author(s):  
Adel Ghenaiet ◽  
Nouredine Djeghri

This paper presents a multi-block solver dealing with an inviscid three dimensional compressible flow through a transonic compressor blading. For efficient computations of the 3D time dependant Euler equations, this solver that we have developed has been cast within a stationary ALE ‘Arbitrary Lagrangian Eulerian’. The main contribution of this paper is by consolidating this ALE formulation, to alleviate the shortcomings linked to rotation effects and the mixed relative subsonic–supersonic inlet flow conditions, which are now simply implemented through an absolute subsonic flow velocity. The finite volume based solver is using the central differencing scheme known as JST (Jameson-Schmidt-Turkel). The explicit multistage Runge-Kutta algorithm is used as a pseudo time marching to the steady-state, coupled with two convergence accelerating techniques; the variable local time-stepping and the implicit residual smoothing procedure. The adaptive implicit residual smoothing has extended the stability range of this explicit scheme, and proved to be successful in accelerating the rate of convergence. This code is currently being extended to include viscous effects, where fluxes are discretized based on Green’s theorem. To support this solver, an H type grid generator based on algebraic and elliptic methods has been developed. The segmentation of the complete domain into smaller blocks has provided full topological and geometrical flexibilities. The code was used to compute the flow field of a transonic axial compressor NASA rotor 37, and comparisons between the calculations and some available experimental data under the design speed and part speed, show qualitatively good agreement.


Author(s):  
Haixin Chen ◽  
Xudong Huang ◽  
Ke Shi ◽  
Song Fu ◽  
Matthew A. Bennington ◽  
...  

Numerical investigations were conducted to predict the performance of a transonic axial compressor rotor with circumferential groove casing treatment. The Notre Dame Transonic Axial Compressor (ND-TAC) was simulated by Tsinghua University with an in-house CFD code (NSAWET) for this work. Experimental data from the ND-TAC were used to define the geometry, boundary conditions and data sampling method for the numerical simulation. These efforts, combined with several unique simulation approaches, such as non-matched grid boundary technology to treat the periodic boundaries and interfaces between groove grids and the passage grid, resulted in good agreement between the numerical and experimental results for overall compressor performance and radial profiles of exit total pressure. Efforts were made to study blade level flow mechanisms to determine how the casing treatment impacts the compressor’s stall margin and performance. The flow structures in the passage, the tip gap and the grooves as well as their mutual interactions were plotted and analyzed. The flow and momentum transport across the tip gap in the smooth wall and the casing treatment configurations were quantitatively compared.


Author(s):  
Hui Zhang ◽  
Hongwei Ma

This paper presents a numerical investigation of effects of sloped trench casing treatment over the rotor tip on the aerodynamic performance and stability of a transonic axial compressor rotor (NASA Rotor 37). The axially cutting tip of blade is the marked characteristic of the casing treatment which is differ with casing treatments without adjustment of the blade tip. The numerical method has been verified by experimental results in the case of the smooth casing with the tip clearance of 0.356 mm at the design wheel speed (17188.7 rpm). The simulation results are well consistent with the measurement results. The experiment results of NASA Rotor 37 cite from NASA Lewis Research Center. The simulation results show a performance improvement of the compressor on the sloped trench casing. The flow fields of the smooth and sloped trench casings were compared, and results show the sloped trench geometry provides a barrier to minimize the forward flow from the tip clearance vortex. In addition, the sloped trench allows the forward facing step at the aft end to be replaced by an aerodynamically smooth transition to guide the flow from the recess into the mainstream. These results show a performance improvement of the compressor.


Sign in / Sign up

Export Citation Format

Share Document