Numerical Research on Effects of Shroud Contraction on Tip Leakage Flow and Overall Performance of Axial Compressors

Author(s):  
Yufan Zhang ◽  
Jiabin Li ◽  
Lucheng Ji

In the design of an axial compressor, many designers take advantage of this technology and employ contracted shroud. What is its impact on tip leakage flow and overall performance of the axial compressor? What is its mechanism? In this paper, the NASA Rotor67 is taken as a research case, and parameterized study is conducted to investigate the effects of shrouds with different inclined angles. The inclined angles range from 0° to 13°. Based on the above described plan, numerical simulations are conducted to the original rotor67 and its modified versions with inclined shroud. To remove factors that might interfere the results, original Rotor 67 and all the blades with modified shroud should be compared to their optimal design status. Adjoint optimization is used to give the optimum blade corresponding to each shroud with different blade inclined angles. Then adjoint optimization was used again to give the optimum meridional flowpath for all the cases with different shroud inclined angles. This provides a powerful tool to evaluate the accuracy of the aforementioned prediction. A detailed comparison is made between the original flowpath and the optimized ones. Numerical results are analyzed in detail between original Rotor67 and its modified versions. The results show that the shroud inclined angle has an effect on the overall performance of the blade. It will also redistribute the velocity triangles and the chordwise distribution of aero load in the tip region. Hence it exerts great influence on the tip leakage flow field in the meantime. Shroud with suitable inclined angles can suppress the developing of leakage vortex , and the best-inclined angle for rotor 67 is found to be roughly 11°.

Author(s):  
Haohao Zhang ◽  
Haowan Zhuang ◽  
Jinfang Teng ◽  
Mingmin Zhu ◽  
Xiaoqing Qiang

A steady and unsteady numerical research is carried out to explore some effects of a specific non-axisymmetric tip clearance layout on the overall performance and stability of an axial compressor stage. For a 4-stage low-speed research compressor (LSRC) in Shanghai Jiao Tong University (SJTU), one-eighth annulus of the inlet guide vane and the first stage rotor was modeled for this study. After the validation for the uniform tip clearance case, a specific non-axisymmetric tip clearance layout is chosen from several random cases generated by the Gaussian Probabilistic Density Function method. Unsteady time-averaged results at the near stall condition show that the chosen non-axisymmetric layout can improve the isentropic efficiency by 1.3% and extend the stall margin by 4%. Detailed analyses on flow fields are carried out to interpret the performance improvement. Due to the circumferential layout of clearance sizes, the inlet mass flow and incidence are redistributed in both the radial and circumferential directions. It leads to blade loading and tip leakage flow varying with the tip clearance size. The quantification of blockage manifests that the blockage arising from the tip leakage flow is significantly alleviated in the non-axisymmetric layout, which leads to improvements in overall performance and stall margin. Transient flow fields at the rotor tip are also analyzed at the near stall condition. For the non-axisymmetric layout, low-momentum regions originating from larger clearance sizes oscillate and develop downstream in one blade passage period.


Author(s):  
Bin Zhao ◽  
Shaobin Li ◽  
Qiushi Li ◽  
Sheng Zhou

The cooling gas of turbine components in aero-engine is extracted from the compressor. Its flow rate is related to the temperature before turbine. The percentage is usually about 3–5% and sometimes up to 25% of the main flow. Very few of the current studies in this field touched on the influence of air bleeding on compressor performance. This paper takes the single stage and low speed axial compressor as the research object, develops a time-accurate numerical method on the compressor overall performance by using the moving mesh to simulate the function of compressor throttle plug. Combined with experimental results, compressor flow field with and without air bleeding are compared and analyzed to study the impact of bleeding on compressor performance. The results show that if a bleeding design can ease the blockage generated by the tip leakage flow and the backflow near the trailing edge, the stall will be effectively postponed and the compressor stability margin will be expanded.


Author(s):  
Yanfei Gao ◽  
Yangwei Liu ◽  
Luyang Zhong ◽  
Jiexuan Hou ◽  
Lipeng Lu

AbstractThe standard k-ε model (SKE) and the Reynolds stress model (RSM) are employed to predict the tip leakage flow (TLF) in a low-speed large-scale axial compressor rotor. Then, a new research method is adopted to “freeze” the turbulent kinetic energy and dissipation rate of the flow field derived from the RSM, and obtain the turbulent viscosity using the Boussinesq hypothesis. The Reynolds stresses and mean flow field computed on the basis of the frozen viscosity are compared with the results of the SKE and the RSM. The flow field in the tip region based on the frozen viscosity is more similar to the results of the RSM than those of the SKE, although certain differences can be observed. This finding indicates that the non-equilibrium turbulence transport nature plays an important role in predicting the TLF, as well as the turbulence anisotropy.


Author(s):  
Rubén Bruno Díaz ◽  
Jesuino Takachi Tomita ◽  
Cleverson Bringhenti ◽  
Francisco Carlos Elizio de Paula ◽  
Luiz Henrique Lindquist Whitacker

Abstract Numerical simulations were carried out with the purpose of investigating the effect of applying circumferential grooves at axial compressor casing passive wall treatment to enhance the stall margin and change the tip leakage flow. The tip leakage flow is pointed out as one of the main contributors to stall inception in axial compressors. Hence, it is of major importance to treat appropriately the flow in this region. Circumferential grooves have shown a good performance in enhancing the stall margin in previous researches by changing the flow path in the tip clearance region. In this work, a passive wall treatment with four circumferential grooves was applied in the transonic axial compressor NASA Rotor 37. Its effect on the axial compressor performance and the flow in the tip clearance region was analyzed and set against the results attained for the smooth wall case. A 2.63% increase in the operational range of the axial compressor running at 100%N, was achieved, when compared with the original smooth wall casing configuration. The grooves installed at compressor casing, causes an increase in the flow entropy generation due to the high viscous effects in this gap region, between the rotor tip surface and casing with grooves. These viscous effects cause a drop in the turbomachine efficiency. For the grooves configurations used in this work, an efficiency drop of 0.7% was observed, compared with the original smooth wall. All the simulations were performed based on 3D turbulent flow calculations using Reynolds Averaged Navier-Stokes equations, and the flow eddy viscosity was determined using the two-equation SST turbulence model. The details of the grooves geometrical dimensions and its implementation are described in the paper.


Author(s):  
Young-Jin Jung ◽  
Tae-Gon Kim ◽  
Minsuk Choi

This paper addresses the effect of the recessed blade tip with and without a porous material on the performance of a transonic axial compressor. A commercial flow solver was employed to analyze the performance and the internal flow of the axial compressor with three different tip configurations: reference tip, recessed tip and recessed tip filled with a porous material. It was confirmed that the recessed blade tip is an effective method to increase the stall margin in an axial compressor. It was also found in the present study that the strong vortex formed in the recess cavity on the tip pushed the tip leakage flow backward and weakened the tip leakage flow itself, consequently increasing the stall margin without any penalty of the efficiency in comparison to the reference tip. The recessed blade tip filled with a porous material was suggested with hope to obtain the larger stall margin and the higher efficiency. However, it was found that a porous material in the recess cavity is unfavorable to the performance in both the stall margin and the efficiency. An attempt has been made to explain the effect of the recess cavity with and without a porous material on the flow in an axial compressor.


Author(s):  
Martina Ricci ◽  
Roberto Pacciani ◽  
Michele Marconcini ◽  
Andrea Arnone

Abstract The tip leakage flow in turbine and compressor blade rows is responsible for a relevant fraction of the total loss. It contributes to unsteadiness, and have an important impact on the operability range of compressor stages. Experimental investigations and, more recently, scale-resolving CFD approaches have helped in clarifying the flow mechanism determining the dynamics of the tip leakage vortex. Due to their continuing fundamental role in design verifications, it is important to establish whether RANS/URANS approaches are able to reproduce the effects of such a flow feature, in order to correctly drive the design of the next generation of turbomachinery. Base studies are needed in order to accomplish this goal. In the present work the tip leakage flow in axial compressor rotor blade cascade have been studied. The cascade was tested experimentally in Virginia Tech Low Speed Cascade Wind Tunnel in both stationary and moving endwall configurations. Numerical analyses were performed using the TRAF code, a state-of-the-art in-house-developed 3D RANS/URANS flow solver. The impact of the numerical framework was investigated selecting different advection schemes including a central scheme with artificial dissipation and a high-resolution upwind strategy. In addition, two turbulence models have been used, the Wilcox linear k–ω model and a non-linear eddy viscosity model (Realizable Quadratic Eddy Viscosity Model), which accounts for turbulence anisotropy. The numerical results are scrutinized using the available measurements. A detailed discussion of the vortex evolution inside the blade passage and downstream of the blade trailing edge is presented in terms of streamwise velocity, streamwise vorticity, and turbulent kinetic energy contours. The purpose is to identify guidelines for obtaining the best representation of the vortex dynamics, with the methodologies usually employed in routine design iterations and, at the same time, evidence their weak aspects that need further modelling efforts.


Author(s):  
Jichao Li ◽  
Feng Lin ◽  
Sichen Wang ◽  
Juan Du ◽  
Chaoqun Nie ◽  
...  

Circumferential single-groove casing treatment becomes an interesting topic in recent few years, because it is a good tool to explore the interaction between the groove and the flow in blade tip region. The stall margin improvement (SMI) as a function of the axial groove location has been found for some compressors, such a trend cannot be predicted by steady high-fidelity CFD simulations. Recent efforts show that to catch such a trend, multi-passage, unsteady flow simulations are needed as the stalling mechanism itself involves cross-passage flows and unsteady dynamics. This indicates a need to validate unsteady numerical simulation results. In this paper, an extensive experimental study of a total of fifteen single casing grooves in a low-speed axial compressor rotor is presented, the groove location varies from 0.4% to 98.3% of axial tip chord are tested. The unsteady pressure data both at casing and at the blade wake with different groove locations are measured and processed, including the movement of trajectory of tip leakage flow, the evolution of unsteadiness of tip leakage flow (UTLF), the unsteady spectrum signature during the stall process, and the outlet unsteady flow characteristic along the span. These data provide a case study for validation of the unsteady CFD results, and may be helpful for further interpretation on the stalling mechanism affected by circumferential casing grooves.


Author(s):  
Minsuk Choi ◽  
Junyoung Park ◽  
Jehyun Baek

A three-dimensional computation was conducted to understand effects of the inlet boundary layer thickness on the internal flow and the loss characteristics in a low-speed axial compressor operating at the design condition (φ = 85%) and near stall condition (φ = 65%). At the design condition, independent of the inlet boundary layer thickness, flows in the axial compressor show similar characteristics such as the pressure distribution, size of hub corner-stall, tip leakage flow trajectory, limiting streamlines on the blade suction surface, etc. But, as the load is increased, for the thick inlet boundary layer at hub and casing, the hub corner stall grows to make a large separation region between the hub and suction surface, and the tip leakage flow is more vortical than that observed in the case with thin inlet boundary layer and has the critical point where the trajectory of the tip leakage flow is suddenly turned to the downstream. For the thin inlet boundary layer, the hub corner stall decays to form the thick boundary layer from hub to midspan on the suction surface owing to the blockage of the tip leakage flow and the tip leakage flow leans to the circumferential direction more than at the design condition. In addition to these, the severe reverse flow, induced by both boundary layers on the blade surface and the tip leakage flow, can be found to act as the blockage of flows near the casing, resulting in a heavy loss. As a result of these differences of the internal flow made by the different inlet boundary layer thickness, the spanwise distribution of the total loss is changed dramatically. At the design condition, total pressure losses for two different boundary layers are almost alike in the core flow region but the larger losses are generated at both hub and tip when the inlet boundary layer is thin. At the near stall condition, however, total loss for thick inlet boundary layer is found to be greater than that for thin inlet boundary layer on most of the span except the region near the hub and casing. In order to analyze effects of inlet boundary layer thickness on total loss in detail, total loss is scrutinized through three major loss categories available in a subsonic axial compressor such as profile loss, tip leakage loss and endwall loss.


2014 ◽  
Vol 30 (3) ◽  
pp. 307-313 ◽  
Author(s):  
R. Taghavi-Zenou ◽  
S. Abbasi ◽  
S. Eslami

ABSTRACTThis paper deals with tip leakage flow structure in subsonic axial compressor rotor blades row under different operating conditions. Analyses are based on flow simulation utilizing computational fluid dynamic technique. Three different circumstances at near stall condition are considered in this respect. Tip leakage flow frequency spectrum was studied through surveying instantaneous static pressure signals imposed on blades surfaces. Results at the highest flow rate, close to the stall condition, showed that the tip vortex flow fluctuates with a frequency close to the blade passing frequency. In addition, pressure signals remained unchanged with time. Moreover, equal pressure fluctuations at different passages guaranteed no peripheral disturbances. Tip leakage flow frequency decreased with reduction of the mass flow rate and its structure was changing with time. Spillage of the tip leakage flow from the blade leading edge occurred without any backflow in the trailing edge region. Consequently, various flow structures were observed within every passage between two adjacent blades. Further decrease in the mass flow rate provided conditions where the spilled flow ahead of the blade leading edge together with trailing edge backflow caused spike stall to occur. This latter phenomenon was accompanied by lower frequencies and higher amplitudes of the pressure signals. Further revolution of the rotor blade row caused the spike stall to eventuate to larger stall cells, which may be led to fully developed rotating stall.


Sign in / Sign up

Export Citation Format

Share Document