The Aerodynamic Optimization Design of Turbine Cascade With Nonaxisymmetric Endwall and Experimental Validations

Author(s):  
Hao Liu ◽  
Xin Shen ◽  
Xiaocheng Zhu ◽  
Zhaohui Du ◽  
Hong Yang ◽  
...  

The nonaxisymmetric endwall profiling has been proven to be an effective tool to reduce the secondary flow loss in turbomachinery. In the present work, an endwall optimization design procedure for reducing secondary flow losses has been developed which allowed complete 3-dimensional parameterization design of the turbine endwall. A so-called shape function and a decay function were used for the definition of the nonaxisymmetric endwall. The shape function was used to control the curvature in the circumferential direction and the decay function was used to control the curvature in the axial direction. The design of the endwall was generated by the product of these two functions. The sinusoidal function was used for the shape function and the B-spline was used for the decay function. This parametrization allowed influencing the contouring of the specific endwall region. The profile of the endwall has been optimized using automatic numerical optimization by means of an improved efficient global optimization algorithm based on kriging surrogate model. The niching micro genetic algorithm was used to get the correlation vector of Kriging model, which eliminated the dependence of correlation vector starting search points. This method reduced the difficulty of finding appropriate penalty parameters and increased the robustness of the optimization method. The 3D-Reynolds-averaged Navier-Stokes flow solver based on CFX, with a k-ω model for turbulence model, was used for all numerical calculations. An in-house optimization design system was developed to close the loop of the geometry definition, flow solving and the optimization algorithm which allowed the solution of non-linear problems. A large-scale linear cascade with a low-speed wind tunnel has been chosen for the experimental validation of the optimization results. The experimental measurements and numerical simulations both demonstrated that the total pressure loss and secondary flow intensity were reduced with the nonaxisymmetric endwall used in the cascade passage. The detailed flow pattern comparisons between the passage with based flat endwall and the optimization nonaxisymmetric endwall were given by the numerical simulations method and entropy generation rates analysis were used for the investigation of the secondary flow loss reduction mechanism in the nonaxisymmetric endwall profile cascade.

Author(s):  
Hao Liu ◽  
Chenxing Hu ◽  
Xin Shen ◽  
Xiaocheng Zhu ◽  
Hong Yang ◽  
...  

The nonaxisymmetric endwall profiling has been proven to be an effective tool to reduce the secondary flow loss in turbomachinery. In the present work, first, without considering the endwall midgap in the real machine, an endwall optimization design procedure for reducing secondary flow losses has been developed, which allowed complete three-dimensional parameterization turbine endwall design. The profile of the endwall has been designed using automatic numerical optimization by means of an improved efficient global optimization algorithm based on kriging surrogate model. Next, a large-scale linear cascade with a low-speed wind tunnel has been chosen for the experimental validation of the optimization results. The experimental measurements and numerical simulations both demonstrated that the total pressure loss and secondary flow intensity were reduced with the nonaxisymmetric endwall used in the cascade passage. Then, in order to evaluate the ability of the optimized nonaxisymmetric endwall with the midgap, the midgap was added in for both the baseline flat endwall and the optimized nonaxisymmetric endwall in the numerical simulations analysis. The entropy generation rates analysis were used for the investigation of loss distribution in the passage. For the cascade in the present work, with the midgap added in, the optimized nonaxisymmetric endwall did not perform as well as the situation without the midgap in the loss reduction. In addition, comparing to the baseline flat endwall, the optimized nonaxisymmetric endwall needed more net leakage flow to avoid the ingress of passage flow into the midgap.


Author(s):  
Lei He ◽  
Hao Liu ◽  
Xiaocheng Zhu ◽  
Ouyang Hua ◽  
Zhaohui Du

The nonaxisymmetric endwall has been verified to be an effective method in reducing the endwall secondary flow loss. Some assembly features, such as the midgap in the hub of real aircraft engines, may have an influence on the endwall secondary flow. In the present work, a nonaxisymmetric endwall with midgap structure is designed for a large linear turbine cascade. A nonaxisymmetric endwall optimization design procedure is developed to minimize the total pressure loss coefficient at the passage exit. The profile of the endwall is designed using automatic numerical optimization with the Kriging surrogate method. The numerical simulation based on a transition shear stress transport model is used as the aerodynamic evaluation tool for the optimization system. When the midgap is considered in the design, mixing loss between midgap flows and main flow is significantly reduced. However, the loss relative to the passage vortex is increased to some extent.


Water ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 884
Author(s):  
Rawaa Shaheed ◽  
Abdolmajid Mohammadian ◽  
Xiaohui Yan

River bends are one of the common elements in most natural rivers, and secondary flow is one of the most important flow features in the bends. The secondary flow is perpendicular to the main flow and has a helical path moving towards the outer bank at the upper part of the river cross-section, and towards the inner bank at the lower part of the river cross-section. The secondary flow causes a redistribution in the main flow. Accordingly, this redistribution and sediment transport by the secondary flow may lead to the formation of a typical pattern of river bend profile. It is important to study and understand the flow pattern in order to predict the profile and the position of the bend in the river. However, there are a lack of comprehensive reviews on the advances in numerical modeling of bend secondary flow in the literature. Therefore, this study comprehensively reviews the fundamentals of secondary flow, the governing equations and boundary conditions for numerical simulations, and previous numerical studies on river bend flows. Most importantly, it reviews various numerical simulation strategies and performance of various turbulence models in simulating the flow in river bends and concludes that the main problem is finding the appropriate model for each case of turbulent flow. The present review summarizes the recent advances in numerical modeling of secondary flow and points out the key challenges, which can provide useful information for future studies.


2021 ◽  
Vol 11 (7) ◽  
pp. 3017
Author(s):  
Qiang Gao ◽  
Siyu Gao ◽  
Lihua Lu ◽  
Min Zhu ◽  
Feihu Zhang

The fluid–structure interaction (FSI) effect has a significant impact on the static and dynamic performance of aerostatic spindles, which should be fully considered when developing a new product. To enhance the overall performance of aerostatic spindles, a two-round optimization design method for aerostatic spindles considering the FSI effect is proposed in this article. An aerostatic spindle is optimized to elaborate the design procedure of the proposed method. In the first-round design, the geometrical parameters of the aerostatic bearing were optimized to improve its stiffness. Then, the key structural dimension of the aerostatic spindle is optimized in the second-round design to improve the natural frequency of the spindle. Finally, optimal design parameters are acquired and experimentally verified. This research guides the optimal design of aerostatic spindles considering the FSI effect.


2002 ◽  
Vol 124 (2) ◽  
pp. 278-285 ◽  
Author(s):  
Gang Liu ◽  
Zhongqin Lin ◽  
Youxia Bao

In the tooling design of autobody cover panels, design of drawbead will affect the distribution of drawing restraining force along mouth of dies and the relative flowing velocity of the blank, and consequently, will affect the distributions of strain and thickness in a formed part. Therefore, reasonable design of drawbead is the key point of cover panels’ forming quality. An optimization design method of drawbead, using one improved hybrid optimization algorithm combined with FEM software, is proposed in this paper. First, we used this method to design the distribution of drawbead restraining force along the mouth of a die, then the actual type and geometrical parameters of drawbead could be obtained according to an improved drawbead restraining force model and the improved hybrid optimization algorithm. This optimization method of drawbead was used in designing drawing tools of an actual autobody cover panel, and an optimized drawbead design plan has been obtained, by which deformation redundancy was increased from 0% under uniform drawbead control to 10%. Plastic strain of all area of formed part was larger than 2% and the minimum flange width was larger than 10 mm. Therefore, not only better formability and high dent resistance were obtained, but also fine cutting contour line and high assembly quality could be obtained. An actual drawing part has been formed using the optimized drawbead, and the experimental results were compared with the simulating results in order to verify the validity of the optimized design plan. Good agreement of thickness on critical areas between experimental results and simulation results proves that the optimization design method of drawbead could be successfully applied in designing actual tools of autobody cover panels.


ISRN Optics ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Suyong Wu ◽  
Xingwu Long ◽  
Kaiyong Yang

We present a novel fast robust design method of multilayer optical coatings. The sensitivity of optical films to production errors is controlled in the whole optimization design procedure. We derive an analytical calculation model for fast robust design of multilayer optical coatings. We demonstrate its effectiveness by successful application of the robust design method to a neutral beam splitter. It is showed that the novel robust design method owns an inherent fast computation characteristic and the designed film is insensitive to the monitoring thickness errors in deposition process. This method is especially of practical significance to improve the mass production yields and repetitive production of high-quality optical coatings.


Author(s):  
Fusheng Meng ◽  
Jie Gao ◽  
Weiliang Fu ◽  
Xuezheng Liu ◽  
Qun Zheng

In a high endwall angle turbine, large meridional expansion can cause the strong secondary flow at the endwall, which results in a larger endwall flow loss than the small meridional expansion turbine. The endwall heat transfer is strongly affected by secondary flow effect. In order to optimize the endwall flow to reduce the flow loss and optimize the distribution of heat load, the swept-curved method was used in this study. The swept-curved method was investigated on a transonic second stator (S2) with large meridional expansion in a Low-Pressure (LP) Turbine. Validation studies were performed to investigate the aerodynamic and the heat transfer prediction ability of shear stress transport (SST) turbulence model. The influence of different shapes of the stacking line, including forward-swept, backward-swept, positive-curved and negative-curved, were investigated through numerical simulation. The parameterized control of swept-curved height and angle were adopted to optimize the performance of the aerodynamic and heat transfer. 3D flow field calculation captured the relatively accurate flow structures in the parts of endwall and near endwall. Heat transfer behaviors were explored by means of isothermal wall temperature and Nusselt number (Nu) distribution. The results show that the maximal heat transfer coefficient at the leading edge, for the formation of horseshoe vortexes that cause the high velocity towards the endwall. The swept vane can improve the static pressure and heat load distribution at the endwall region, which decreases the area-averaged shroud heat flux by 2.6 percent and the loss coefficient 1.3 percent.


2015 ◽  
Vol 727-728 ◽  
pp. 541-545
Author(s):  
Xiang Yu Ding

This paper uses the ANSYS software to analysis the outer arm opening angel(OAOA) and the outer arm arc angle(OAAA) of W-type metallic sealing ring which can effects on the mechanical properties,obtained in that when the OAOA choose from 1.398°to 14.156 °and the OAAA choose from 30.21° to 59.5 °, the mechanical properties of the sealing ring can satisfy the requirement of use. Then using the MOGA optimization algorithm to optimize the design of W-type metallic sealing ring, and find when the OAOA choose 3.39°and the OAAA choose 32.18°are the optimal design of the W-type metallic sealing ring.


Sign in / Sign up

Export Citation Format

Share Document