Computational Study of a Customised Shallow-Sump Aero-Engine Bearing Chamber With Inserts to Improve Oil Residence Volume

Author(s):  
Akinola A. Adeniyi ◽  
Budi Chandra ◽  
Kathy Simmons

An aero-engine bearing chamber is a structure that is used to contain and collect oil used in lubricating and cooling the bearings supporting the high-speed engine shafts. There are various bearings in an aero-engine. Within the bearing chambers, there are typically the bearings, rotating shafts, seals and gears (in some designs). The walls of the bearing chamber are stationary and there are vents and sumps to take out the oil, via an offtake pipe, and the sealing air. The oil collected via the sump and vents is recycled and used again in the loop. To prevent oil degradation and reduce chance of coking in the chamber, it is desired that all of the oil goes through the recycling loop, with no oil staying longer than necessary in the chamber. The sealing air is used to maintain a positive pressure to keep the oil within the chamber. The flow inside a bearing chamber is highly turbulent and consists of a rotating mixture of oil and air. A smaller amount of the oil, mostly as oil-droplets, exits at the vents and is separated from the air using de-aerators [1]. It is expected that by gravity, most of the oil collects at the sump and can be easily scavenged. This is provided the sump can be large enough. The geometry of a bearing chamber is, however, complex largely because of space limitations. It is very important that oil is not resident longer than necessary to prevent over-heating and therefore deterioration or coking. Experimental observations by Chandra & Simmons [2], have shown that bearing chambers with deep sumps perform better that those with shallow sumps. Since shallow sumps are inevitable, a number of innovative studies have been done to improve bearing chamber designs. The presence of air in the oil (e.g. as bubbles) reduces the efficiency of the scavenging pump. Other factors such as oil momentum and windage can take oil away from the off-take pipe potentially increasing oil residence volume. Chandra & Simmons [2] placed inserts such as grille cover, perforated plate, etc, on a side of the bearing wall and improvements in the residence volume were seen. In this work, we are looking at a detailed computational fluid dynamics (CFD) simulation of one of the inserts that performed well. This will aid understanding of the flow characteristics of using an insert to improve oil residence in a bearing chamber.

Author(s):  
Adam Robinson ◽  
Carol Eastwick ◽  
Herve´ Morvan

Within an aero-engine bearing chamber oil is provided to components to lubricate and cool. This oil must be efficiently removed (scavenged) from the chamber to ensure it does not overheat and degrade. Bearing chambers typically contain a sump section with an exit pipe leading to a scavenge pump. In this paper a simplified geometry of a sump section, here simply made of a radial off-take port on a walled inclined plane, is analysed computationally. This paper follows on work presented within GT2008-50634. In the previous paper it was shown that simple gravity draining from a static head of liquid cold be modelled accurately, for what was akin to a deep sump situation fond in integrated gear boxes for example. The work within this paper will show that the draining of flow perpendicular to a moving film can be modelled. This situation is similar to the arrangements found in transmission bearing chambers. The case modelled is of a walled gravity driven film running down a plane with a circular off-take port, this replicates experimental work similar to that reported in GT2008-50632. The commercial computational fluid dynamics (CFD) code, Fluent 6 [1] has been employed for modelling, sing the Volume of Fluid (VOF) approach of Hirt and Nichols [2, 3] to capture the physics of both the film motion and the two phase flow in the scavenge pipe system. Surface tension [4] and a sharpening algorithm [5] are used to complement the representation of the free surface and associated effects. This initial CFD investigation is supported and validated with experimental work, which is only depicted briefly here as it is mainly sued to support the CFD methodology. The case has been modelled in full as well as with the use of a symmetry plane running down the centre of the plane parallel to the channel walls. This paper includes details of the meshing methodology, the boundary conditions sued, which will be shown to be of critical importance to accurate modelling, and the modelling assumptions. Finally, insight into the flow patterns observed for the cases modelled are summarised. The paper further reinforces that CFD is a promising approach to analysing bearing chamber scavenge flows although it can still be relatively costly.


2021 ◽  
Author(s):  
Szym on Buhajczuk

A numerical study into magneto-aerodynamic bleed control systems has been undertaken with the intent of improving the shock swallowing ability of high speed engine intakes. Past research has shown that bleed slots effectively remove sufficient mass flow of air from the system to permit shocks to be swallowed. A magnetic field's influence on a charged boundary layer creates a possibility of sealing a bleed slot when not needed. 2D bleed slots were modeled using structured grids for use with the FLUENT CFD solver. User defined functions were written to simulate charge generation and magnetic field forces. Solutions revealed that bleed slot angles, free stream Mach numbers, pressure ratios, boundary layer displacement thickness, field strength and field position all affect how the system performs. Results have shown that a properly positioned magnetic field can reduce sonic flow coefficients up to 88%, thus justifying further research and investment in wind tunnel experiments.


2012 ◽  
Vol 27 (2) ◽  
pp. 173-183 ◽  
Author(s):  
Lisa Prahl Wittberg ◽  
Magnus Björkman ◽  
Gohar Khokhar ◽  
Ulla-Britt Mohlin ◽  
Anders Dahlkild

Abstract The flow pattern in the grooves plays a major role for the homogeneity of refining as well as for the transfer and loading of fiber flocs in refining position on the bar edges. However, it is an area where very little information is available. In the present study, flow conditions in the grooves in a Low-Consistency (LC) - disc refiner were studied both experimentally and numerically. The experimental study involved high-speed imaging through a 3 cm peephole into a commercial refiner. The Computational Fluid Dynamics (CFD) simulation focused on the flow condition in a radial groove, considering both Newtonian and non-Newtonian flows. Flow conditions for stator and rotor grooves were modeled along the groove at different angular speeds and pressure differences over the refiner. Both the experimental and the modeling results show a dual flow pattern in the grooves; a rotational/spiral movement at the top of the groove and a flow in the direction of the groove at the bottom, which to the authors knowledge has not been reported in literature. The strong vortical motion at the top of the grooves observed both for the rotor and the stator are believed to be important for placing the fibers onto the bar edges and to induce shear forces in such a way that the fibers get treated. Moreover, a large sensitivity to suspension properties in terms of the development of flow pattern was detected.


Author(s):  
Yu Wang ◽  
Hamn-Ching Chen ◽  
Guilherme Vaz ◽  
Simon Burmester

Abstract The application of a computational fluid dynamics (CFD) code to simulate the response of a semi-submersible floating wind turbine under pitch decay motion was investigated in this study. Estimation of the natural period, the hydrodynamic damping and the flow characteristics were the main focus of this study. An extensive verification study of the simulation results was conducted to improve the confidence and reliability of the numerical simulation by the estimation of the numerical errors and uncertainties. The time series of pitch motion was plotted against model test data. In addition, the pitch period and hydrodynamic damping were calculated and compared to experimental data. Detailed flow characteristics as vorticity field and hydrodynamic pressure field on the floater surface were illustrated after post processing of the computational data. The results of the flow characteristics suggest that the heave damping plates were a major contributor to the hydrodynamic damping of this floater in pitch decay.


Author(s):  
Simon R. Stow ◽  
Marco Zedda ◽  
Antonios Triantafyllidis ◽  
Andrew Garmory ◽  
Epaminondas Mastorakos ◽  
...  

A Conditional Moment Closure (CMC) approach embedded in an LES CFD framework is presented for simulation of the reactive flow field of an aero-engine combustor operating at altitude relight conditions. Before application to the combustor geometry, the CMC model was validated on the standard lab-scale Sandia flame D. For the combustor simulation, a global mechanism for n-heptane was used along with a Lagrangian approach for the spray, to which a secondary break-up model was applied. The simulation modelled a multi-sector sub-atmospheric rig that was used to verify the altitude relight capability of the combustor. A comprehensive suite of diagnostics was applied to the rig test, including high-speed OH and kerosene PLIF as well as high speed OH* chemiluminescence. The CMC-based CFD simulation was able to predict well the position of the flame front and fuel distribution at the low pressure, low temperature conditions typical of altitude relight. Furthermore, the simulation of the ignition showed strong similarities with OH* chemiluminescence measurements of the event. An EBU-based LES was run too and showed to be unable to capture the flame front as well as the CMC model could. This work demonstrates that CMC LES can be an effective tool to support assessment of the relight capability of aero-engine combustors.


Author(s):  
E. D. Kay ◽  
H. Power ◽  
S. Hibberd

Droplet-cooled oil films develop on the internal surfaces of an aero-engine bearing chamber and are a primary mechanism in removing heat from the chamber as oil is continuously collected and externally cooled and recycled. Predicting the internal oil temperature and oil temperature history is an important thermal problem which becomes more apparent with potential increases in operating temperatures of gas turbines. Studying interacting oil flow and thermal processes within a simplified bearing chamber geometry provides useful information on the trends and characteristics which can arise under different applied flow conditions (e.g. mass flow rate of oil through the system) and insight to the effect chamber design parameters may have on oil degradation and cooling of chamber walls. Thin oil films develop on the walls of a bearing chamber as oil is injected or shed from bearings and impinges on the walls under a strong airflow set in motion by rotating components. Typically the film is also subject to a heat flux from the hot chamber walls and the droplets provide an important cooling effect through “heat-to-oil” mechanisms. We present a mathematical model for the depth-averaged flow and associated heat transfer by thin oil films on the walls of a simplified aero-engine bearing chamber. Cases corresponding to generic flow conditions relevant to an aero-engine bearing chamber are presented. Characteristics of the film and the efficacy of the flow regime to transfer heat from the chamber is explored through calculating residence times and time histories of oil particles as they make a transit of the internal system.


2021 ◽  
Author(s):  
Shangshuang Chen ◽  
Yun Wang ◽  
Fuzhu Li ◽  
Shenwei Xue ◽  
Zhenying Xu ◽  
...  

Abstract Cavitation generation methods have been applied in multifarious directions due to their diversity. And scholars have carried out numerous researches and discussions on cavitation generation methods. The purpose of this study is to explore the generating mechanism and evolution law of volumetric alternate cavitation (VAC). In the VAC, the liquid water is placed in an airtight container with variable volume. With the volume alternately changes, the liquid water inside the container continues to cavitate. In this study, the mixture turbulence model and in-cylinder dynamic grid model were used to apply computational fluid dynamics (CFD) simulation of volume alternate cavitation. In the simulation, the cloud images at 7 heights on the central axis are monitored, and the phenomenon and mechanism of height and eccentricity are analyzed detailedly. By using the method of cavitation flow visualization (CFV), the generating mechanism and evolution law of cavitation are clarified. The synergistic effects of experiments and high-speed camera capture confirm the simulation. In the experiment, the volume change stroke of the airtight container is 20 mm, the volume change frequency is 18 Hz, and the shooting frequency of the high-speed camera is set to 10000 fps. The results show that the position of occurring cavitation phenomenon has a reasonable law during the whole evolution cycle of the cavitation cloud. It is evident that a cycle of volume alternation corresponds to the generation, development and collapse stages of cavitation bubbles.


Author(s):  
Gil Jun Lee ◽  
Jay Kim ◽  
Tod Steen

Squeeze film dampers (SFDs) are used in high-speed turbomachinery to provide external damping to the system. Computational fluid dynamics (CFD) simulation is a highly effective tool to predict the performance of SFDs and obtain design guidance. It is shown that a moving reference frame (MRF) can be adopted for CFD simulation, which saves computational time significantly. MRF-based CFD analysis is validated, then utilized to design oil plenums of SFDs. Effects of the piston ring clearances, the oil groove, and oil supply ports are studied based on CFD and theoretical solutions. It is shown that oil plenum geometries can significantly affect the performance of the SFD especially when the SFD has a small clearance. The equivalent clearance is proposed as a new concept that enables quick estimation of the effect of oil plenum geometries on the SFD performance. Some design practices that have been adopted in industry are revisited to check their validity. Based on simulation results, a set of general design guidelines is proposed.


Author(s):  
C. W. Lee ◽  
P. C. Palma ◽  
K. Simmons ◽  
S. J. Pickering

Investigations into the single-phase velocity field of a model aero-engine bearing chamber are presented. Adequately resolving the airflow field is important to subsequent computational modelling of two-phase fluid transport and heat transfer characteristics. A specially designed test rig, representing the features of a Rolls-Royce Trent series aero-engine bearing chamber, was constructed. Experimental data for the airflow field was obtained using particle image velocimetry (PIV). The results show a strong influence of shaft rotation and chamber geometry on the flow features within the bearing chamber. A computational fluid dynamics (CFD) simulation was carried out using the commercial CFD code FLUENT 6. Flow features were adequately modelled, showing the features of secondary velocities. Turbulence modelling using the differential Reynolds stress (RSM) model shows good agreement with the experimental data.


2013 ◽  
Vol 393 ◽  
pp. 753-758 ◽  
Author(s):  
Mohd Amal Asrol Omar ◽  
Wirachman Wisnoe ◽  
Azman Bakri

A fume cupboard is equipment used to carry out chemical reaction process in its working chamber. A suction fan takes air or gas from the working chamber and releases it outside. When the air or gas is flowing from the inlet to the outlet, some recirculation zones may be formed depending on the internal shape design of the fume cupboard. This recirculation zone may create back flow that can be the cause of leakage. Leakage happens when airborne contaminants escape through inlet of the fume cupboard to the user breathing zone and the surrounding air in the room. To have a good fume cupboard, the recirculation zone needs to be minimised. In this paper, the flow characteristic of a Servco fume cupboard will be presented as a result of computational fluid dynamics (CFD) simulation using κ-ω turbulence model. The results are presented in terms of velocity components at different cross sections of the fume cupboard.


Sign in / Sign up

Export Citation Format

Share Document