On the Transferability of Probabilistic Fracture Mechanics Results for Scaled 50Hz and 60Hz Heavy Duty Gas Turbine Rotor Disks

Author(s):  
Christian Amann ◽  
Kai Kadau ◽  
Peter Gumbsch

In the development of heavy duty gas turbines for the energy sector oftentimes the majority of the design work is performed in either the 50 Hz or the 60 Hz size. Many aspects of the designed engine for one market (50 Hz as an example) can then be used to design with significantly reduced effort for the other market (i.e. 60 Hz). For example, most dimensions of rotor components can be geometrically scaled such that centrifugal forces in those massively rotating parts are conserved. This article investigates the transferability of probabilistic fracture mechanics results from one market to the other one. Or in other words: can we perform probabilistic fracture mechanics for the 50 Hz rotor design and deduce the risk of failure for the scaled 60 Hz design (or vice versa)? Multiple challenges must be considered in the transferability including the different volume, surface to volume ratio, as well as the different transient behavior for the smaller 60 Hz design. We address that challenge by building up complexity for a generic rotor design in order to separate the different effects and associated design features. We then discuss several Siemens rotor designs with respect to transferability of probabilistic fracture mechanics results and correlations to deterministic approaches. This work enables the creation of design rules to avoid unnecessary work for scaled 50 Hz/60 Hz market engines and therefore supports the reduction of product development costs.

Author(s):  
Kai Kadau ◽  
Phillip W. Gravett ◽  
Christian Amann

We developed and successfully applied a direct simulation Monte-Carlo scheme to quantify the risk of fracture for heavy duty rotors commonly used in the energy sector. The developed Probabilistic Fracture Mechanics high-performance computing methodology and code ProbFM routinely assesses relevant modes of operation for a component by performing billions of individual fracture mechanics simulations. The methodology can be used for new design and life-optimization of components, as well as for the risk of failure quantification of in service rotors and their re-qualifications in conjunction with non-destructive examination techniques, such as ultrasonic testing. The developed probabilistic scheme integrates material data, ultra-sonic testing information, duty-cycle data, and finite element analysis in order to determine the risk of failure. The methodology provides an integrative and robust measure of the fitness for service and allows for a save and reliable operation management of heavy duty rotating equipment.


2018 ◽  
Vol 140 (6) ◽  
Author(s):  
Kai Kadau ◽  
Phillip W. Gravett ◽  
Christian Amann

We developed and successfully applied a direct simulation Monte Carlo (MC) scheme to quantify the risk of fracture for heavy-duty rotors commonly used in the energy sector. The developed probabilistic fracture mechanics (FM), high-performance computing methodology, and code ProbFM routinely assess relevant modes of operation for a component by performing billions of individual FM simulations. The methodology can be used for new design and life optimization of components, as well as for the risk of failure RoF quantification of in service rotors and their requalifications in conjunction with nondestructive examination techniques, such as ultrasonic testing (UT). The developed probabilistic scheme integrates material data, UT information, duty-cycle data, and finite element analysis (FEA) in order to determine the RoF. The methodology provides an integrative and robust measure of the fitness for service and allows for a save and reliable operation management of heavy-duty rotating equipment.


Author(s):  
O. R. Schmoch ◽  
B. Deblon

The peripheral speeds of the rotors of large heavy-duty gas turbines have reached levels which place extremely high demands on material strength properties. The particular requirements of gas turbine rotors, as a result of the cycle, operating conditions and the ensuing overall concepts, have led different gas turbine manufacturers to produce special structural designs to resolve these problems. In this connection, a report is given here on a gas turbine rotor consisting of separate discs which are held together by a center bolt and mutually centered by radial serrations in a manner permitting expansion and contraction in response to temperature changges. In particular, the experience gained in the manufacture, operation and servicing are discussed.


Author(s):  
H. R. Millwater ◽  
Y.-T. Wu ◽  
J. W. Cardinal ◽  
G. G. Chell

This paper describes the application of an advanced probabilistic fracture mechanics computational algorithm with inspection simulation to the probabilistic life assessment of a turbine blade attachment, sometimes referred to as a steeple or fir tree. The life of the steeple is limited by high cycle fatigue. The methodology utilized combines structural finite element analysis, stochastic fatigue crack growth, and crack inspection and repair. The resulting information provides the engineer with an assessment of the probability of failure of the structure as a function of operating time and the effect of the inspection procedure. This information can form the basis of inspection planning and retirement-for-cause decisions.


2012 ◽  
Vol 479-481 ◽  
pp. 2001-2004
Author(s):  
Zhi Yong Zhang ◽  
Tian Shu Song ◽  
Yang He

A new method is presented in the paper. The fatigue life reliability of submarine cone-cylinder shell is investigated, based on the combination between the methods of conventional Monte Carlo and classical probabilistic fracture mechanics. Firstly, Monte Carlo method is employed to obtain the reliability of given initial fatigue life. Secondly, the two induced factors M1 and M2 in the paper are estimated according to the initial fatigue life and the reliability. Thirdly, based on the two factors, the other fatigue life reliability is obtained by using classical probabilistic fracture mechanics method. Finally, numerical cases show that the proposed method is more efficient without accuracy loss for fatigue life reliability compared with Monte Carlo method. This method can also be applied to predict the fatigue life reliability of analogue structures.


2021 ◽  
Author(s):  
Mrugesh Gajjar ◽  
Christian Amann ◽  
Kai Kadau

Abstract We present an efficient Monte Carlo based probabilistic fracture mechanics simulation implementation for heterogeneous high-performance (HPC) architectures including CPUs and GPUs. The specific application focuses on large heavy-duty gas turbine rotor components for the energy sector. A reliable probabilistic risk quantification requires the simulation of millions to billions of Monte Carlo (MC) samples. We apply a modified Runge-Kutta algorithm in order to solve numerically the fatigue crack growth for this large number of cracks for varying initial crack sizes, locations, material and service conditions. This compute intensive simulation has already been demonstrated to perform efficiently and scalable on parallel and distributed HPC architectures including hundreds of CPUs utilizing the Message Passing Interface (MPI) paradigm. In this work, we go a step further and include GPUs in our parallelization strategy. We develop a load distribution scheme to share one or more GPUs on compute nodes distributed over a network. We detail technical challenges and solution strategies in performing the simulations on GPUs efficiently. We show that the key computation of the modified Runge-Kutta integration step speeds up over two orders of magnitude on a typical GPU compared to a single threaded CPU. This is supported by our use of GPU textures for efficient interpolation of multi-dimensional tables utilized in the implementation. We demonstrate weak and strong scaling of our GPU implementation, i.e., that we can efficiently utilize a large number of GPUs/CPUs in order to solve for more MC samples, or reduce the computational turn-around time, respectively. On seven different GPUs spanning four generations, the presented probabilistic fracture mechanics simulation tool ProbFM achieves a speed-up ranging from 16.4x to 47.4x compared to single threaded CPU implementation.


Author(s):  
Mrugesh Gajjar ◽  
Christian Amann ◽  
Kai Kadau

Abstract We present an efficient Monte Carlo (MC) based probabilistic fracture mechanics simulation implementation on heterogeneous high-performance (HPC) architectures including CPUs and GPUs for large heavy-duty gas turbine rotor components for the energy sector. A reliable probabilistic risk quantification requires simulating millions to billions of MC samples. We apply a modified Runge-Kutta algorithm to solve numerically the fatigue crack growth for this large number of cracks for varying initial crack sizes, locations, material and service conditions. This compute intensive simulation was demonstrated to perform efficiently and scalable on parallel and distributed architectures with hundreds of CPUs utilizing Message Passing Interface (MPI). In this work, we include GPUs in parallelization strategy. We develop a load distribution scheme to share one or more GPUs on compute nodes distributed over network. We detail technical challenges and strategies in performing the simulations on GPUs efficiently. We show that the key computation of the modified Runge-Kutta integration step speeds up over two orders of magnitude on a typical GPU compared to a single threaded CPU supported by use of GPU textures for efficient interpolation of multi-dimensional tables. We demonstrate weak and strong scaling of our GPU implementation, i.e., that we can efficiently utilize large number of GPUs/CPUs to solve for more MC samples, or reduce the computational turnaround time, respectively. On seven different GPUs spanning four generations, our probabilistic fracture mechanics simulation tool ProbFM achieves speedups ranging from 16.4x to 47.4x compared to single threaded CPU implementation.


Author(s):  
Paolo Di Sisto ◽  
Massimiliano Grosso

Gas turbine rotors must be reliable, stable and durable because they operate in a demanding centrifugal and thermal environment without being maintained and replaced for many years. The design of a rotor is one of the most challenging tasks that gas turbine design team should face because its basic architecture has to be decided in the early design stage together with the gas turbine flow path and combustion architecture. A wrong initial decision may require a substantial modification of the gas turbine cross section and consequently have a dramatic impact on the project schedule. This paper introduces readers to the main aspects of the gas turbine rotor design, including the multidiscipline design tools that allow a quick rotor components shaping nowadays. Thanks to the use of some of the most popular gas turbines in the O&G application, this paper will explain how the rotor design has developed over the last decades. An example of how today a new rotor is designed will be provided, by describing some of the main topics analyzed during the conceptual design phase of a General Electric (GE) engine that will be on the market since the 2016. The paper also describes some of the biggest challenges that rotor design teams will have to face in the next future.


Author(s):  
J. H. Kim ◽  
T. W. Song ◽  
T. S. Kim ◽  
S. T. Ro

This paper describes models for a transient analysis of heavy duty gas turbines, and presents dynamic simulation results of a modern electricity generation engine. Basic governing equations are derived from integral forms of unsteady conservation equations. Mathematical models of each component are described with the aid of unsteady one-dimensional governing equations and steady state component characteristics. Special efforts have been made to predict the compressor characteristics including the effect of movable vanes, which govern the running behavior of the whole engine. The derived equation sets are solved numerically by a fully implicit method. A controller model that maintains constant rotational speed and target temperature (turbine inlet or exhaust temperature) is used to simulate real engine operations. Component models, especially those of the compressor, are validated through a comparison with test data. Simulated is the dynamic behavior of a 150MW class engine. The simulated time-dependent variations of engine parameters such as power, rotational speed, fuel, temperatures and guide vane angles are compared with field data. Simulated results are fairly close to the operation data.


Sign in / Sign up

Export Citation Format

Share Document