An Investigation on the Static Performance of the Non-Circular Journal Bearing Using Fourier Analysis

Author(s):  
Jiale Tian ◽  
Baisong Yang ◽  
Lie Yu ◽  
Jian Zhou

As one of the most important components in a rotor-bearing system, journal bearings provide proper support and damping to the rotor so that it can run both smoothly and efficiently and keep stable under different working conditions. As the rotating speed of the rotor growing faster and load getting heavier, the traditional cylinder journal bearing can no longer meet the demand of stabilizing the rotor, so different kinds of non-circular journal bearings were invented, such as elliptical bearing, multi-lobe bearing, wave bearing and etc., to provide better stability and greater load capacity. However, these kinds of non-circular bearings were mostly designed by experience of the engineers, and also the current hydrodynamic bearing design methodology still depends on empirical design. There lacks of corresponding theoretical foundation. In order to develop a theoretical method for bearing designing, an innovative analyzing approach needs to be carried out to explore the mechanism of the bearings and its performance. In this paper, a new approach is presented focusing on the profile of each bearing and their film thickness. A universal mathematical expression for different types of non-circular bearings has been put forward based on the Fourier series theory. The influence of periodic harmonics of film thickness on the static performance of non-circular bearings of finite length is studied for incompressible lubricant. The results show that the film thickness can always be expanded into a Fourier series, and the harmonic components of film pressure can be obtained by solving the Reynolds equation. Finally, the relation between the k-th order harmonic component H0,k and the corresponding static pressure component P0,k is established. This new investigation can be used to improve the non-circular bearing designing methodology with theoretical guidance.

Author(s):  
Baisong Yang ◽  
Jiale Tian ◽  
Jian Zhou ◽  
Lie Yu

A theoretical analysis has been done to investigate the static performance of short hydrodynamic journal bearings with a generalized film thickness expression by a sum of Fourier series equation. The hydrodynamic film thickness was written into a summation of an infinite harmonic component of trigonometric function. Reynolds equation with short bearing theory is solved for steady-state operations. In this paper, the steady-state analysis of the generalized hydrodynamic bearing has been done and compared with some typical journal bearings with respect to their harmonic components of film thickness, pressure distribution and load capacity. The relationship between the k-th order harmonic component of the film thickness H0,k and the static pressure component P0,k was established. It was found that the value of P0,k is directly determined not only by the k-th order harmonic component H0,k but also the (k−1)-th order component P0,k−1 indirectly produced by the previous harmonic component H0,k−1.This new investigation method can used to improve the performance of hydrodynamic journal bearings for shape optimization of hydrodynamic journal bearings.


2014 ◽  
Vol 607 ◽  
pp. 608-611
Author(s):  
Hui Hui Feng ◽  
Chun Dong Xu ◽  
Feng Feng Wang

The water-lubricated bearings have gained an increasing focus to overcome the disadvantages of the oil film bearings and gas bearings. In this paper, the influences of orifice diameter in aligned and misaligned conditions on the static performance of two hydrostatic, four-recess, water-lubricated journal bearings used to support a rigid rotor, are investigated. The steady Reynolds equation for the journal bearing for the turbulent bulk flow and the film thickness expression considering tilting angles are used and numerically solved by finite difference method. Results demonstrate that the static performances, such as the quality, power loss and temperature rise are affected by the tilting angles, orifice diameter to some degree.


1959 ◽  
Vol 81 (2) ◽  
pp. 245-252 ◽  
Author(s):  
F. W. Ocvirk ◽  
G. B. DuBois

A method of relating surface finish to minimum oil-film thickness and the corresponding load capacity of plain journal bearings is presented with supporting experimental data. The effect of clearance on load capacity and friction are shown on graphs indicating an optimum bearing clearance.


A theoretical investigation is made to study the way in which thermal distortion of bearing components modifies the characteristics of journal bearings. The thermoelastic treatment developed is two-dimensional and incorporates an existing thermohydrodynamic analysis. It is applied to circular and partial arc bearings for a range of parametric groups governing the bearing operation. The results show that for a fixed journal position, the effect of thermal distortion is to reduce the minimum film thickness, increase the load capacity, increase the peak temperatures and pressures, and also to enhance considerably the stability of the bearing. The effects are more marked for larger oil-lubricated bearings and higher speeds of operation and it is suggested that discrepancies observed between experimental results and existing theory could be largely explained by this phenomenon.


1967 ◽  
Vol 89 (2) ◽  
pp. 203-210 ◽  
Author(s):  
R. R. Donaldson

Reynolds’ equation for a full finite journal bearing lubricated by an incompressible fluid is solved by separation of variables to yield a general series solution. A resulting Hill equation is solved by Fourier series methods, and accurate eigenvalues and eigenvectors are calculated with a digital computer. The finite Sommerfeld problem is solved as an example, and precise values for the bearing load capacity are presented. Comparisons are made with the methods and numerical results of other authors.


1990 ◽  
Vol 112 (2) ◽  
pp. 224-229 ◽  
Author(s):  
G. Gupta ◽  
C. R. Hammond ◽  
A. Z. Szeri

The aim of this paper is to make available to the industrial designer results of the thermohydrodynamic theory of journal bearings, by providing a simplified, yet accurate model of journal bearing lubrication that can be implemented on a personal computer and be used in an interactive mode. The simplified THD theory we propose consists of two coupled ordinary differential equations for pressure and energy and an algebraic equation for viscosity, which are to be solved iteratively. Bearing load capacity, maximum bearing temperature, maximum pressure, coefficient of friction and lubricant flow rate calculated from this simplified theory compare well with results from a more sophisticated model. We also make comparisons with experimental data on full journal bearings, demonstrating substantial agreement between experiment and simplified theory.


2021 ◽  
Author(s):  
Fangcheng Xu ◽  
Jianhua Chu ◽  
Wenlin Luan ◽  
Guang Zhao

Abstract In this paper, single-bump foil models with different thickness and double-bump foil models with different initial clearances are established. The structural stiffness and equivalent viscous damping of double-bump foil and single-bump foil are analyzed by finite element simulation. The results show that the double-layer bump foil has variable stiffness and the displacement of the upper bump is greater than the initial gap when the two-layer bumps contact. A model for obtaining static characteristics of aerodynamic compliant foil thrust bearing is established on the basis of the stiffness characteristics of the double-bump foil. This paper solves gas Reynolds equation, the gas film thickness equation and the foil stiffness characteristic equation via the finite element method and the finite difference method. The static characteristics of the thrust bearings including the bearing pressure distribution, the gas film thickness and the friction power consumption have been obtained. The static characteristics of two kinds of foils have been compared and analyzed, and the effect of initial clearance on the static performance of double-bump foil bearings is studied. The results show that the double-bump foil structure can effectively improve the load capacity of thrust bearing. In addition, the static performance of double-bump foil thrust bearings is between the performance of the single-bump foil bearing and the double-bump foil bearing whose foil’s clearance is zero. The smaller the initial clearance is, the easier it will be to form a stable double-bump foil supporting structure.


2019 ◽  
Vol 71 (9) ◽  
pp. 1055-1063 ◽  
Author(s):  
Sanjay Sharma ◽  
Gourav Jamwal ◽  
R.K. Awasthi

Purpose The purpose of this paper is to provide the various steady state parameters of hydrodynamic journal bearings have been determined to get maximum performance enhancement ratio. For this, the bearings inner surface is textured with triangular shape with different texture depths and a number of textures in pressure increasing region. The textured region acts as a lubricant reservoir, which provides additional film-thickness and reduce friction. Therefore, enhance the overall performance of bearing. Design/methodology/approach In the present study, the effect of triangular shaped texture on the static performance characteristics of a hydrodynamic journal bearing has been studied. Different values of texture depths and a number of textures have been numerically simulated in pressure developing region. The static performance characteristics have been calculated by solving the fluid flow governing Reynolds equation using the finite element method, assuming iso-viscous Newtonian fluid. The performance enhancement ratio, which is the ratio of load carrying capacity (LCC) to the coefficient of friction (COF) has been calculated from results to finalized optimum design parameters. Findings The paper provides numerically obtained results indicate that surface texturing can improve bearing performance if the textured region is placed in the pressure increasing region. Moreover, surface texturing is the most effective at bearing performance enhancement when the bearing operates at lower eccentricity ratios and texture depth. The performance enhancement ratio, which is the ratio of LCC to the COF is found to be a maximum value of 2.198 at texture depth of 1.5, eccentricity ratio of 0.2 and the textured region located in the increasing pressure region. Research limitations/implications The present study is based on a numerical based research approach, which has its limitations. So, researchers are encouraged to investigate the same work experimentally. Practical implications The paper includes implications to be beneficial for designers for designing better hydrodynamic journal bearings. Originality/value For the triangular shaped texture, considered in the present study, the optimum values of texture depth and texture distribution region have also been determined. While designing, designers should focus on those values of texture depth, texture region and a number of textures, which give the maximum value of performance enhancement ratio, which represents maximum LCC at the lowest value of the COF.


1979 ◽  
Vol 21 (5) ◽  
pp. 345-351 ◽  
Author(s):  
M. K. Ghosh ◽  
B. C. Majumdar ◽  
J. S. Rao

A theoretical analysis of the steady-state and dynamic characteristics of multi-recess hybrid oil journal bearings is presented. A perturbation theory for small vibrations is used to solve an incompressible, finite journal bearing with a time-dependent term. Load capacity, attitude angle, friction parameter, stiffness and damping coefficients are evaluated for a capillary-compensated bearing.


1970 ◽  
Vol 12 (2) ◽  
pp. 116-122 ◽  
Author(s):  
H. F. Black

The application of a perturbation in terms of simple correlations for friction in turbulent Couette and ‘screw’ flows, together with a further empirical assumption consonant with the experimental work of Smith and Fuller (1), leads to a pressure field equation identical in form with the Reynolds equation. The load capacity of journal bearings throughout most of the superlaminar range may be represented by a single curve, and existing laminar solutions may be applied with the parameters modified by Reynolds number. The theory is compared with published experimental results, and with the most successful theoretical treatment (4). The correlations obtained confirm the adequacy of the theory to predict performance in the superlaminar régime.


Sign in / Sign up

Export Citation Format

Share Document