A Methodology and Case Study of Outboard Traverse Flame Detection on Aeroderivative Gas Turbines

Author(s):  
Jean-Roch Jacques ◽  
Noor Azman Mohamat Nor

Abstract Outboard-traverse flame migration in an annular profile, combustion gas pathway of a Siemens aero-derivative turbine engine can be detected with a dual immersion thermocouple. This solution is applicable for Oil & Gas operators using gas turbines fueled by natural gas. The typical flame profile within the annular combustion gas flow path is disturbed by introducing poor quality fuel into the engine. The skewed or outward bias flame profile in turn causes severe overheating of the hot section components around the outer radius of the annular combustor exit wall covering a number of hot section components. This ultimately causes accelerated components deterioration and failure to meet its target design life. Consequently, resulting in rejection of these components and increasing the life cycle cost of their asset operations. The introduction of the dual immersion thermocouple allow us to detect outward bias flame pattern using the exhaust gas temperature profile during operation and warn the operator of this condition via software alarm and trip provision. By implementing a means of detecting outward bias flame patterns, the operator will be made aware of this condition and can then take means to resolve this matter by first, allowing to optimize hot section components boundary limits and saving overhaul costs and second, avoid unplanned maintenance outages due to hot section premature failures.

Author(s):  
Isao Yuri ◽  
Tohru Hisamatsu ◽  
Shunkichi Ueno ◽  
Tatsuki Ohji

In order to understand recession behavior and the amount of recession of Lu2Si2O7 in the combustion gas flow, sintered Lu2Si2O7 specimens were manufactured by hot pressing and exposed under various combustion gas flow conditions (T = 1300–1500 °C, P = 0.3 MPa, V = 150 m/s, PH2O = 27–69 kPa, t = 10h). After the exposure tests, etch pits, which are assumed to form due to volatilization of SiO2 in the grain boundary phase, were observed at the surface of specimen. The amount of Lu2SiO5 phase at the surface of specimen increased with the increase of gas temperature or water vapor partial pressure. A corresponding decrease in the amount of Lu2Si2O7 phase was observed. Furthermore, by using the average weight loss rate for exposure times of ten hours, the influence of gas temperature and water vapor partial pressure on weight loss rate was examined, and the amount of recession under gas turbine conditions was calculated.


Author(s):  
D. Filsinger ◽  
A. Schulz ◽  
S. Wittig ◽  
C. Taut ◽  
H. Klemm ◽  
...  

A further increase of thermal efficiency and a reduction of the exhaust emissions of ground based gas turbines can be achieved by introducing new high temperature resistant materials. Therfore, ceramics are under international development. They offer excellent strengths at room and elevated temperatures. For gas turbine combustor applications, however, these materials have to maintain their advantageous properties under hostile environment. For the assessment and comparison of the oxidation behavior of different nonoxide ceramic materials a test rig was developed at the Institute for Thermal Turbomachinery (ITS), University of Karlsruhe, Germany. The test rig was integrated into the high temperature/ high pressure laboratory. A ceramic model combustion chamber was designed which allowed the exposure of standard four-point flexure specimens to the hot combustion gas flow. Gas temperatures and pressures could be varied in a wide range. Additionally, the partial steam pressure could be adjusted to real combustor conditions. The present paper gives a detailed description of the test rig and presents results of 100 hours endurance tests of ceramic materials at 1400°C. The initial strengths and the strengths after oxidation tests are compared. In addition to this, photographs illustrating the changes of the material’s microstructure are presented.


Author(s):  
Juha Kaikko ◽  
Jari L. H. Backman ◽  
Lasse Koskelainen ◽  
Jaakko Larjola

Externally-fired microturbines (EFMT) yield promising performance in small-scale utilization of biofuels. As in larger gas turbines, the part-load performance of the EFMT is very sensitive to the selected power control method, and in general subject to severe degradation at part load. The control parameters typically include the maximum combustion gas temperature or turbine inlet temperature and the speed of the shaft. At the design point, power generation efficiency can be increased by allowing a fraction of air to bypass the burner and the combustion gas – air heat exchanger. At the same time the heat exchanger size is increased. Therefore, the by-pass flow affects the optimal sizing of the EFMT as well. In this paper, the effect of by-pass flow on the part-load performance of a single-shaft EFMT in combined heat and power generation is analyzed. In the application, the microturbine is operated by the heat demand. The control methods incorporate the use of the maximum combustion gas temperature, the speed of the shaft, and the amount of by-pass air. The focus of the study is to determine the economically optimal control scheme for the engine. The economy model uses the profit flow from the EFMT as a criterion. The results show that the inclusion of the by-pass variation in the control methods can improve the economy of temperature-controlled EFMT at part load but has no benefits when using speed control.


1994 ◽  
Vol 116 (3) ◽  
pp. 511-516 ◽  
Author(s):  
Y. Ozawa ◽  
J. Hirano ◽  
M. Sato ◽  
M. Saiga ◽  
S. Watanabe

Catalytic combustion is an ultralow NOx combustion method, so it is expected that this method will be applied to a gas turbine combustor. However, it is difficult to develop a catalytic combustor because catalytic reliability at high temperature is still insufficient. To overcome this difficulty, we designed a catalytic combustor in which premixed combustion was combined. By this device, it is possible to obtain combustion gas at a combustion temperature of 1300°C while keeping the catalytic temperature below 1000°C. After performing preliminary tests using LPG, we designed two types of combustor for natural gas with a capacity equivalent to one combustor used in a 20 MW class multican-type gas turbine. Combustion tests were conducted at atmospheric pressure using natural gas. As a result, it was confirmed that a combustor in which catalytic combustor segments were arranged alternately with premixing nozzles could achieve low NOx and high combustion efficiency in the range from 1000°C to 1300°C of the combustor exit gas temperature.


Author(s):  
Steven D. Woodruff ◽  
Rodney J. Anderson

The use of coal and coal-derived fuels in combustion gas turbines is being aggressively pursued. Contaminants in these fuels can lead to various detrimental effects to the turbine including increased pressure drops, altered gas flow patterns, and the potential for surging. An instrument has been developed to provide a real-time measure of the loading of particles entrained in the products of combustion of these fuels. The unit is a self-compensating, two color transmissometer which measures the obscuration of a laser beam due to the scattering of light by particles along the path of the beam. The transmissometer consists of, a HeNe laser (632.8 nm) and a HeCd laser (441.6 nm), detectors, and data acquisition/control electronics. Utilizing windows appropriately placed in the products of combustion stream, the transmissometer has a time resolution of about 1 second and a sensitivity of about 0.1 percent.


Author(s):  
Y. Etori ◽  
T. Hisamatsu ◽  
I. Yuri ◽  
Y. Yasutomi ◽  
T. Machida ◽  
...  

In order to evaluate the durability of silicon-carbides (SiC) and silicon-nitrides (Si3N4), we studied the oxidation behavior of SiC and Si3N4 in 1500°C combustion gas flow. We found that the exposure to the combustion gas flow resulted in the weight losses of those ceramics due to the partial disappearance of the oxidized surface layer. We investigated the effects of sintering aids and high speed gas flow as possible factors for the disappearance of the oxide layer. Two kinds of SiC, without sintering aids and sintered with B4C, were used as test specimens. After the exposure to combustion gas flow conditions of 1500°C, 150m/s, 0.18MPa, the weight loss rate and thickness of the oxide layer were quite the same for each specimen of SiC. The existence of sintering aids did not have any effect on the disappearance of the oxide layer. To investigate the effect of gas flow, we set each specimen in a tube made of SiC to protect it from the gas flow. The tube had two holes each acting both as inlet and exhaust vents. Consequently, the oxide layer formed thickly. But at the spots on the specimen facing the holes, the oxide layer was thin. Hollows occurred on the specimen of SiC at these spots. It seems that the existence of gas flow is a very important factor in the disappearance of the oxide layer. Alumina (Al2O3) and zirconia (ZrO2) as oxide ceramics were exposed to the combustion gas flow. The weight of these also decreased. There is a possibility that the weight loss of ceramics in combustion gas flow is caused by degradation of oxide layer on their surface from erosion and hot corrosion due to some oxide scales coming from the test equipment.


Author(s):  
Muhamad Shazarizul Haziq Mohd Samsuri ◽  
Hasril Hasini ◽  
Noor Akma Watie Mohd Noor ◽  
Meor Mohd Faisal Meor Zulkifli

This paper presents a thermogravimetric analysis and combustion test for different coals used in a coal-fired power plant in Malaysia. The main objective is to investigate the suitability of adopting a newly-introduced sub-bituminuous coal in an existing boiler furnace commonly firing standard design coals. In order to ensure that the new coal will not give an adverse effect to the boiler, detail analytical and thermal performance of the new coal is investigated, together with design and other limiting coals. The combustion test was performed in a scaled down, 150kW, single swirl burner combustion test facility available in TNB Research Sdn. Bhd. In the study, combustion gas temperature at different sectors downstream of burner region is measured to determine the peak temperature for all tested coals. Based on the investigation, it was noted that coal with the highest fixed carbon content gives the highest temperature measure at all sectors. Similarly, coal with the lowest fixed carbon gives the lowest temperature. The temperature profile for the newly tested coal was found to be comparable to the design and limiting value coals. Even though it was observed that the temperature given by the new coal is the highest slightly downstream of the burner, the temperature was observed to be decreases as combustion gas flow downstream of the combustor rig. Based on the observation it can be said that the new coal is suitable to be used by the existing boiler furnace.


Author(s):  
Robert G. Laycock ◽  
Thomas H. Fletcher

Some industrial gas turbines are currently being fired directly using heavy fuel oil, which contains a small percentage of inorganic material that can lead to fouling and corrosion of turbine components. Deposits of heavy fuel oil ash were created in the Turbine Accelerated Deposition Facility (TADF) at Brigham Young University under gas turbine-related conditions. Ash was produced by burning heavy fuel oil in a downward-fired combustor and collecting the ash from the exhaust stream. The mass mean ash particle diameter from these tests was 33 microns. This ash was then introduced into the TADF and entrained in a hot gas flow that varied from 1088 to 1206°C. The gas and particle velocity was accelerated to over 200 m/s in these tests. This particle-laden hot gas stream then impinged on a nickel base superalloy metal coupon approximately 3 cm in diameter, and an ash deposit formed on the coupon. Sulfur dioxide was introduced to the system to achieve 1.1 mol% SO2 in the exhaust stream in order to simulate SO2 levels in turbines currently burning heavy fuel oil. The ash deposits were collected, and the capture efficiency, surface roughness, and deposit composition were measured. The deposits were then washed with deionized water, dried, and underwent the same analysis. It was found that, as the gas temperature increased, there was no effect on capture efficiency and the post-wash roughness of the samples decreased. Washing aided in the removal of sulfur, magnesium, potassium, and calcium.


1995 ◽  
Vol 117 (1) ◽  
pp. 81-87
Author(s):  
S. Tsutsumi ◽  
J. Boone

Fuel gas compressors installed in cogeneration systems must be highly reliable and efficient machines, like the other main components, such as gas turbines, gas engines, etc. In the range of gas flow rate and pressure conditions generally required for such systems, the oil-injected screw compressor is often the most suitable compressor type for these requirements. Advantages of oil injected screw compressors are: improved compression efficiency; low discharge gas temperature; high reliability; simple mechanical construction; which all result from injection of lubricant into the compressor. Injected lubricant is discharged together with compressed gas on the high-pressure side but the oil is separated by a fine oil separation system down to a level that causes no problems for the downstream combustion equipment. The oil-injected screw compressor is equipped with an integral stepless capacity control by means of a slide valve, which makes part-load operation possible with reduced power consumption and improves overall system efficiency. As cogeneration systems, which are energy efficient and environmentally sound, are now increasing in number, so oil-injected screw compressors are expected to be used more widely.


Sign in / Sign up

Export Citation Format

Share Document