The Effect of Rotor-Stator Gap on Repeating-Stage Compressor Loss

Author(s):  
Pawel J. Przytarski ◽  
Andrew P. S. Wheeler

Abstract In this paper we study the effect of rotor-stator axial gap on midspan compressor loss using high fidelity Large-Eddy Simulations. For this purpose we mimic the multi-stage environment using a new numerical method which recycles wake unsteadiness from a single blade passage back into the inlet of the computational domain. As a result a type of repeating-stage simulation is obtained such as observed by an embedded blade-row. We find that freestream turbulence levels rise significantly as the size of the rotor-stator axial gap is reduced. This is because of the effect of axial gap on turbulence production, which becomes amplified at smaller axial gaps and drives increases in dissipation and loss. This effect is found to raise loss by between 7–9.5% over the range of conditions tested here. This effect significantly outweighs the beneficial effects of wake recovery on loss.

2020 ◽  
Vol 142 (12) ◽  
Author(s):  
Pawel J. Przytarski ◽  
Andrew P. S. Wheeler

Abstract In this paper, we study the effect of rotor-stator axial gap on midspan compressor loss using high-fidelity scale-resolving simulations. For this purpose, we mimic the multi-stage environment using a new numerical method that recycles wake unsteadiness from a single blade passage back into the inlet of the computational domain. As a result, a type of repeating-passage simulation is obtained such as observed by an embedded blade-row. We find that freestream turbulence levels rise significantly as the size of the rotor-stator axial gap is reduced. This is because of the effect of axial gap on turbulence production, which becomes amplified at smaller axial gaps and drives increases in dissipation and loss. This effect is found to raise loss by between 5.5% and 9.5% over the range of conditions tested here. This effect significantly outweighs the beneficial effects of wake recovery on loss.


Author(s):  
Adèle Poubeau ◽  
Roberto Paoli ◽  
Daniel Cariolle

This paper focuses on two decisive steps towards Large Eddy Simulation of a solid rocket booster jet. First, three-dimensional Large Eddy Simulations of a non-reactive booster jet including the nozzle were obtained at flight conditions of 20 km of altitude. A particularly long computational domain (400 nozzle exit diameters in the jet axial direction) was simulated, thanks to an innovative local time-stepping method via coupling multi instances of a fluid solver. The dynamics of the jet is analysed and comparison of the results with previous knowledge validates the simulations and confirms that this computational setup can be applied for Large Eddy Simulations of a reactive booster jet. The second part of this paper details the implementation of a simple method to study the hot plume chemistry. Despite its limitations, it is accurate enough to observe the various steps of the chemical mechanism and assess the effect of uncertainties of the rate parameters on chlorine reactions. It was also used to reduce the set of chemical reactions into a short scheme involving a minimum of species and having a limited impact on the physical time step of the Large Eddy Simulations.


2005 ◽  
Vol 127 (2) ◽  
pp. 388-394 ◽  
Author(s):  
R. D. Stieger ◽  
H. P. Hodson

This paper presents two-dimensional LDA measurements of the convection of a wake through a low-pressure turbine cascade. Previous studies have shown the wake convection to be kinematic, but have not provided details of the turbulent field. The spatial resolution of these measurements has facilitated the calculation of the production of turbulent kinetic energy, and this has revealed a mechanism for turbulence production as the wake convects through the blade row. The measured ensemble-averaged velocity field confirmed the previously reported kinematics of wake convection while the measurements of the turbulence quantities showed the wake fluid to be characterized by elevated levels of turbulent kinetic energy (TKE) and to have an anisotropic structure. Based on the measured mean and turbulence quantities, the production of turbulent kinetic energy was calculated. This highlighted a TKE production mechanism that resulted in increased levels of turbulence over the rear suction surface where boundary-layer transition occurs. The turbulence production mechanism within the blade row was also observed to produce more anisotropic turbulence. Production occurs when the principal stresses within the wake are aligned with the mean strains. This coincides with the maximum distortion of the wake within the blade passage and provides a mechanism for the production of turbulence outside of the boundary layer.


Author(s):  
Mbu Waindim ◽  
Datta V. Gaitonde

Equilibrium turbulent flat plate boundary layers with time invariant statistics were obtained at Mach numbers 1.7, 2.3, and 2.9. These are to be used as the initial condition for Large Eddy Simulations (LES) or Direct Numerical Simulations (DNS) of shock wave/turbulent boundary layer interactions utilizing a body force-based method. The results obtained are supplemented by an analysis of the mean and statistical properties of the respective boundary layers. The spanwise extent of the domain required to allow adequate decorrelation between the centerline and the boundaries is investigated by extensively probing the flowfields obtained. This is done to quantify the coherent structures of the turbulent flow. Specifically, two point correlations and integral length scales are used to investigate spanwise decorrelation distances in an attempt to pick a computational domain which is large enough to permit decorrelation downstream but small enough to minimize computational costs. It is shown that by examining the precursor events in the upstream region, namely the generalized stability criterion, it is possible to provide estimates for the force field parameters necessary for transition for a given flow, with only a small portion of the domain in the neighborhood of the trip. The technique is made even more efficient by investigating the possibility of determining these parameters using a two-dimensional simulation. Additionally, the three flow fields obtained are surveyed to confirm that they are suitable for subsequent SBLI simulations. We check that (i)they possess the expected turbulent characteristics and (ii)there is no signature of the tripping mechanism.


Author(s):  
Christoph Traxinger ◽  
Julian Zips ◽  
Christian Stemmer ◽  
Michael Pfitzner

Abstract The design and development of future rocket engines severely relies on accurate, efficient and robust numerical tools. Large-Eddy Simulation in combination with high-fidelity thermodynamics and combustion models is a promising candidate for the accurate prediction of the flow field and the investigation and understanding of the on-going processes during mixing and combustion. In the present work, a numerical framework is presented capable of predicting real-gas behavior and nonadiabatic combustion under conditions typically encountered in liquid rocket engines. Results of Large-Eddy Simulations are compared to experimental investigations. Overall, a good agreement is found making the introduced numerical tool suitable for the high-fidelity investigation of high-pressure mixing and combustion.


2017 ◽  
Vol 10 (2) ◽  
pp. 154-168 ◽  
Author(s):  
Stéphane Moreau ◽  
C Becerril ◽  
LYM Gicquel

Compact and non-compact analytical solutions of the subsonic operating point of the entropy wave generator experiment are compared with detailed numerical results obtained by large Eddy simulations. Two energy deposition methods are presented to account for the experimental ignition sequence and geometry: a single-block deposition as previously used and a delayed deposition that reproduces the experimental protocle closely. The unknown inlet acoustic reflection coefficient is assumed to be fully reflective to be more physically consistent with the actual experimental setup. The time delay between the activation of the heating modules must be considered to retrieve the temperature signal measured at the vibrometer and pressure signals at the microphones. Moreover, pressure signals extracted from the large Eddy simulations in the outlet duct using the delayed ignition model clearly reproduce the experimental signals better than the analytical models. An additional simulation with actual temperature fluctuations directly injected at the inlet of the computational domain clearly shows that the pressure fluctuations produced by the acceleration of the hot slug yields indirect noise almost entirely. Finally, the entropy spot is shown to be distorted when convecting through the turbulent flow in the entropy wave generator nozzle. Its amplitude decreases and its shape is dispersed, but hardly any dissipation occurs. The distortion appears to be negligible through the nozzle and become important only when convected over a long distance in the downstream duct. As the dominant frequencies of the entropy wave generator entropy forcing are very low, the effects of dispersion by the mean flow are however weak.


Sign in / Sign up

Export Citation Format

Share Document